
Image Acquisition Toolbox™

User’s Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Image Acquisition Toolbox™ User’s Guide

© COPYRIGHT 2003–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2003 First printing New for Version 1.0 (Release 13+)
September 2003 Online only Revised for Version 1.1 (Release 13SP1)
June 2004 Online only Revised for Version 1.5 (Release 14)
July 2004 Online only Revised for Version 1.6 (Release 14+)
October 2004 Online only Revised for Version 1.7 (Release 14SP1)
March 2005 Online only Revised for Version 1.8 (Release 14SP2)
March 2005 Second printing Minor Revision for Version 1.8
August 2005 Third printing Minor Revision for Version 1.8
September 2005 Online only Revised for Version 1.9 (Release 14SP3)
March 2006 Fourth printing Revised for Version 1.10 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Fifth printing Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 4.0 (Release 2010b)
April 2011 Online only Revised for Version 4.1 (Release 2011a)
September 2011 Online only Revised for Version 4.2 (Release 2011b)
March 2012 Online only Revised for Version 4.3 (Release 2012a)
September 2012 Online only Revised for Version 4.4 (Release 2012b)
March 2013 Online only Revised for Version 4.5 (Release 2013a)
September 2013 Online only Revised for Version 4.6 (Release 2013b)

Contents

Getting Started

1
Image Acquisition Toolbox Product Description 1-2
Key Features . 1-2

Product Overview . 1-3
Introduction . 1-3
Installation and Configuration Notes 1-4
The Image Processing Toolbox Software Required to Use
the Image Acquisition Toolbox Software 1-4

Related Products . 1-4
Supported Hardware . 1-5

Image Acquisition Tool (GUI) . 1-6

Getting Started Doing Image Acquisition
Programmatically . 1-7
Overview . 1-7
Step 1: Install Your Image Acquisition Device 1-8
Step 2: Retrieve Hardware Information 1-9
Step 3: Create a Video Input Object 1-12
Step 4: Preview the Video Stream (Optional) 1-13
Step 5: Configure Object Properties (Optional) 1-16
Step 6: Acquire Image Data . 1-19
Step 7: Clean Up . 1-23

Introduction

2
Toolbox Components Overview . 2-2
Introduction . 2-2
Toolbox Components . 2-3

v

The Image Processing Toolbox Software Required to Use
the Image Acquisition Toolbox Software 2-4

The Image Acquisition Tool (GUI) . 2-5
Supported Devices . 2-5

Setting Up Image Acquisition Hardware 2-7
Introduction . 2-7
Setting Up Frame Grabbers . 2-7
Setting Up Generic Windows Video Acquisition Devices . . 2-8
Setting Up DCAM Devices . 2-8
Resetting Your Image Acquisition Hardware 2-8
A Note About Frame Rates and Processing Speed 2-8

Previewing Data . 2-10
Introduction . 2-10
Opening a Video Preview Window . 2-11
Stopping the Preview Video Stream 2-12
Closing a Video Preview Window . 2-13
Previewing Data in Custom GUIs . 2-13
Performing Custom Processing of Previewed Data 2-15

Using the Image Acquisition Tool GUI

3
The Image Acquisition Tool Desktop 3-2
Opening the Tool . 3-2
Parts of the Desktop . 3-2

Getting Started with the Image Acquisition Tool 3-5

Selecting Your Device in Image Acquisition Tool 3-8
Selecting a Device and Format . 3-8
Adding New Hardware . 3-9
Using a Camera File . 3-10

Setting Acquisition Parameters in Image Acquisition
Tool . 3-11
Using the Acquisition Parameters Pane 3-11

vi Contents

Setting Frames Per Trigger . 3-12
Setting the Color Space . 3-13
Setting Device-Specific Parameters 3-13
Logging Your Data . 3-16
Setting Up Triggering . 3-21
Setting a Region of Interest . 3-24
Restoring Default Parameters . 3-30

Previewing and Acquiring Data in Image Acquisition
Tool . 3-31
The Preview Window . 3-31
Previewing Data . 3-33
Acquiring Data . 3-34

Exporting Data in the Image Acquisition Tool 3-38

Saving Image Acquisition Tool Configurations 3-42

Exporting Image Acquisition Tool Hardware
Configurations to MATLAB . 3-44

Saving and Copying Image Acquisition Tool Session
Log . 3-46
About the Session Log . 3-46
Saving the Session Log . 3-46
Copying the Session Log . 3-47

Registering a Third-Party Adaptor in the Image
Acquisition Tool . 3-49

Connecting to Hardware

4
Getting Hardware Information . 4-2
Getting Hardware Information . 4-2
Determining the Device Adaptor Name 4-3
Determining the Device ID . 4-3
Determining Supported Video Formats 4-6

vii

Creating Image Acquisition Objects 4-9
Types of Objects . 4-9
Video Input Objects . 4-9
Video Source Objects . 4-9
Creating a Video Input Object . 4-10
Specifying the Video Format . 4-12
Specifying the Selected Video Source Object 4-15
Getting Information About a Video Input Object 4-16

Configuring Image Acquisition Object Properties 4-17
About Image Acquisition Object Properties 4-17
Viewing the Values of Object Properties 4-18
Viewing the Value of a Particular Property 4-20
Getting Information About Object Properties 4-21
Setting the Value of an Object Property 4-21

Starting and Stopping a Video Input Object 4-24

Deleting Image Acquisition Objects 4-28

Saving Image Acquisition Objects 4-30
Using the save Command . 4-30
Using the obj2mfile Command . 4-30

Image Acquisition Toolbox Properties 4-31

Acquiring Image Data

5
Acquiring Image Data . 5-2

Data Logging . 5-3
Overview . 5-3
Trigger Properties . 5-4

Setting the Values of Trigger Properties 5-6
About Trigger Properties . 5-6

viii Contents

Specifying Trigger Type, Source, and Condition 5-6

Specifying the Trigger Type . 5-9
Comparison of Trigger Types . 5-9
Using an Immediate Trigger . 5-10
Using a Manual Trigger . 5-13
Using a Hardware Trigger . 5-15
Setting DCAM-Specific Trigger Modes 5-19

Controlling Logging Parameters . 5-26
Data Logging . 5-26
Specifying Logging Mode . 5-26
Specifying the Number of Frames to Log 5-27
Determining How Much Data Has Been Logged 5-29
Determining How Many Frames Are Available 5-31
Delaying Data Logging After a Trigger 5-34
Specifying Multiple Triggers . 5-35

Waiting for an Acquisition to Finish 5-37
Using the wait Function . 5-37
Blocking the Command Line Until an Acquisition
Completes . 5-38

Managing Memory Usage . 5-41
Memory Usage . 5-41
Monitoring Memory Usage . 5-41
Modifying the Frame Memory Limit 5-42
Freeing Memory . 5-43

Logging Image Data to Disk . 5-46
Logging Data to Disk Using VideoWriter 5-46
Logging Data to Disk Using VideoWriter 5-48
Logging Data to Disk Using an AVI File 5-49
Creating an AVI File Object for Logging 5-51
Logging Data to Disk Using an AVI File 5-53

ix

Working with Acquired Image Data

6
Image Acquisition Overview . 6-2

Bringing Image Data into the MATLAB Workspace . . . 6-3
Overview . 6-3
Moving Multiple Frames into the Workspace 6-4
Viewing Frames in the Memory Buffer 6-6
Bringing a Single Frame into the Workspace 6-10

Working with Image Data in MATLAB Workspace 6-12
Understanding Image Data . 6-12
Determining the Dimensions of Image Data 6-13
Determining the Data Type of Image Frames 6-16
Specifying the Color Space . 6-17
Viewing Acquired Data . 6-23

Retrieving Timing Information . 6-24
Introduction . 6-24
Determining When a Trigger Executed 6-24
Determining When a Frame Was Acquired 6-25
Determining the Frame Delay Duration 6-26

Using Events and Callbacks

7
Using Events and Callbacks . 7-2

Using the Default Callback Function 7-3

Event Types . 7-5

Retrieving Event Information . 7-8
Introduction . 7-8
Event Structures . 7-8
Accessing Data in the Event Log . 7-10

x Contents

Creating and Executing Callback Functions 7-13
Introduction . 7-13
Creating Callback Functions . 7-13
Specifying Callback Functions . 7-15
Viewing a Sample Frame . 7-17
Monitoring Memory Usage . 7-18

Using the From Video Device Block in Simulink

8
Simulink Image Acquisition Overview 8-2

Opening the Image Acquisition Toolbox Block
Library . 8-3
Using the imaqlib Command . 8-3
Using the Simulink Library Browser 8-4

Using Code Generation . 8-5

Saving Video Data to a File . 8-6
Introduction . 8-6
Step 1: Open the Image Acquisition Toolbox Library 8-6
Step 2: Open a Model or Create a New Model 8-7
Step 3: Drag the From Video Device Block into the
Model . 8-8

Step 4: Drag Other Blocks to Complete the Model 8-9
Step 5: Connect the Blocks . 8-10
Step 6: Specify From Video Device Block Parameter
Values . 8-11

Step 7: Run the Simulation . 8-13

Configuring GigE Vision Devices

9
Types of Setups . 9-2

xi

Network Hardware Configuration Notes 9-3

Network Adaptor Configuration Notes 9-4
Windows Configuration . 9-4
Linux Configuration . 9-6
Mac Configuration . 9-7

Software Configuration . 9-12

Setting Preferences . 9-14

Troubleshooting . 9-17

Using the Kinect for Windows Adaptor

10
Important Information About the Kinect Adaptor 10-2

Data Streams Returned by the Kinect 10-4

Detecting the Kinect Devices . 10-8

Acquiring Image and Skeletal Data Using Kinect 10-10

Acquiring from Color and Depth Devices
Simultaneously . 10-26

Using Skeleton Viewer for Kinect Skeletal Data 10-28

Installing the Kinect for Windows Runtime 10-31

Support Packages and Support Package Installer 10-37
What Is a Support Package? . 10-37
What Is Support Package Installer? 10-37

xii Contents

Install This Support Package on Other Computers . . . 10-39

Open Examples for This Support Package 10-41
Using the Help Browser . 10-41
Using the Block Library . 10-43
Using Support Package Installer . 10-44

Using the VideoDevice System Object

11
VideoDevice System Object Overview 11-2

Creating the VideoDevice System Object 11-3

Using VideoDevice System Object to Acquire
Frames . 11-5
Kinect for Windows Metadata . 11-7

Using Properties on a VideoDevice System Object 11-10

Code Generation with VideoDevice System Object 11-14
Using the codegen Function . 11-14
Shared Library Dependencies . 11-15
Usage Rules for System Objects in Generated MATLAB
Code . 11-15

Limitations on Using System Objects in Generated
MATLAB Code . 11-16

Adding Support for Additional Hardware

12
Support for Additional Hardware 12-2

xiii

Troubleshooting

13
Troubleshooting Overview . 13-3

DALSA Coreco IFC Hardware . 13-4
Troubleshooting DALSA Coreco IFC Devices 13-4
Determining the Driver Version for DALSA Coreco IFC
Devices . 13-5

DALSA Coreco Sapera Hardware 13-6
Troubleshooting DALSA Coreco Sapera Devices 13-6
Determining the Driver Version for DALSA Coreco Sapera
Devices . 13-7

Data Translation Hardware . 13-8

DCAM IEEE 1394 (FireWire) Hardware on Windows . . 13-9
Troubleshooting DCAM IEEE 1394 Hardware on
Windows . 13-9

Installing the CMU DCAM Driver on Windows 13-10
Running the CMU Camera Demo Application on
Windows . 13-12

Hamamatsu Hardware . 13-16

Matrox Hardware . 13-17
Troubleshooting Matrox Devices . 13-17
Determining the Driver Version for Matrox Devices 13-18

QImaging Hardware . 13-19
Troubleshooting QImaging Devices 13-19
Determining the Driver Version for QImaging Devices . . . 13-20

National Instruments Hardware . 13-21
Troubleshooting National Instruments Devices 13-21
Determining the Driver Version for National Instruments
Devices . 13-22

xiv Contents

Point Grey Hardware . 13-23
Troubleshooting Point Grey Devices 13-23
Determining the Driver Version for Point Grey Devices . . 13-24

GigE Vision Hardware . 13-26
Troubleshooting GigE Vision Devices on Windows 13-26
Troubleshooting GigE Vision Devices on Linux 13-29
Troubleshooting GigE Vision Devices on Mac 13-31

GenICam GenTL Hardware . 13-34
Troubleshooting GenICam GenTL Hardware 13-34

Windows Video Hardware . 13-36
Troubleshooting Windows Video Devices 13-36
Determining the Microsoft DirectX Version 13-37

Linux Video Hardware . 13-39
Troubleshooting Linux Video Devices 13-39

Linux DCAM IEEE 1394 Hardware 13-41
Troubleshooting Linux DCAM Devices 13-41

Macintosh Video Hardware . 13-42
Troubleshooting Macintosh Video Devices 13-42

Macintosh DCAM IEEE 1394 Hardware 13-43
Troubleshooting Macintosh DCAM Devices 13-43

Video Preview Window Troubleshooting 13-44

Contacting MathWorks and Using the imaqsupport
Function . 13-45

xv

Functions — Alphabetical List

14

Properties — Alphabetical List

15

Block Reference

16

Index

xvi Contents

1

Getting Started

The best way to learn about Image Acquisition Toolbox™ capabilities is to
look at a simple example. This chapter introduces the toolbox and illustrates
the basic steps to create an image acquisition application by implementing
a simple motion detection application. The example cross-references other
sections that provide more details about relevant concepts.

• “Image Acquisition Toolbox Product Description” on page 1-2

• “Product Overview” on page 1-3

• “Image Acquisition Tool (GUI)” on page 1-6

• “Getting Started Doing Image Acquisition Programmatically” on page 1-7

1 Getting Started

Image Acquisition Toolbox Product Description
Acquire images and video from industry-standard hardware

Image Acquisition Toolbox enables you to acquire images and video from
cameras and frame grabbers directly into MATLAB® and Simulink®. You can
detect hardware automatically, and configure hardware properties. Advanced
workflows let you trigger acquisition while processing in-the-loop, perform
background acquisition, and synchronize sampling across several multimodal
devices. With support for multiple hardware vendors and industry standards,
you can use imaging devices, ranging from inexpensive Web cameras to
high-end scientific and industrial devices that meet low-light, high-speed,
and other challenging requirements.

Key Features

• Support for industry standards, including DCAM, Camera Link®, and
GigE Vision

• Support for common OS interfaces for webcams, including DirectShow®,
QuickTime, and Video4Linux2

• Support for a range of industrial and scientific hardware vendors

• Multiple acquisition modes and buffer management options

• Synchronization of multimodal acquisition devices with hardware
triggering

• Image Acquisition app for rapid hardware configuration, image acquisition,
and live video previewing

• Support for C code generation in Simulink

1-2

Product Overview

Product Overview

In this section...

“Introduction” on page 1-3

“Installation and Configuration Notes” on page 1-4

“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 1-4

“Related Products” on page 1-4

“Supported Hardware” on page 1-5

Introduction
The Image Acquisition Toolbox software is a collection of functions that
extend the capability of the MATLAB numeric computing environment. The
toolbox supports a wide range of image acquisition operations, including:

• Acquiring images through many types of image acquisition devices, from
professional grade frame grabbers to USB-based webcams

• Viewing a preview of the live video stream

• Triggering acquisitions (includes external hardware triggers)

• Configuring callback functions that execute when certain events occur

• Bringing the image data into the MATLAB workspace

Many of the toolbox functions are MATLAB files. You can view the MATLAB
code for these functions using this statement:

type function_name

You can extend Image Acquisition Toolbox capabilities by writing your own
MATLAB files, or by using the toolbox in combination with other toolboxes,
such as the Image Processing Toolbox™ software and the Data Acquisition
Toolbox™ software.

The Image Acquisition Toolbox software also includes a Simulink block, called
From Video Device, that you can use to bring live video data into a model.

1-3

1 Getting Started

Installation and Configuration Notes
To determine if the Image Acquisition Toolbox software is installed on your
system, type this command at the MATLAB prompt:

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at the MathWorks
Web site (www.mathworks.com).

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software
The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008b or future releases, and you have a current active license
for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

Related Products
MathWorks provides several products that are relevant to the kinds of tasks
you can perform with the Image Acquisition Toolbox software and that extend

1-4

http://www.mathworks.com

Product Overview

the capabilities of MATLAB. For information about these related products,
see www.mathworks.com/products/imaq/related.html.

Supported Hardware
The list of hardware that the Image Acquisition Toolbox software supports
can change in each release, since hardware support is frequently added. The
MathWorks Web site is the best place to check for the most up to date listing.

To see the full list of hardware that the toolbox supports, visit the
Image Acquisition Toolbox product page at the MathWorks Web site
www.mathworks.com/products/imaq and click the Supported Hardware
link.

1-5

http://www.mathworks.com/products/imaq/related.html
http://www.mathworks.com/products/imaq

1 Getting Started

Image Acquisition Tool (GUI)
The functionality of the Image Acquisition Toolbox software is available in a
desktop application. You connect directly to your hardware in the tool and
can set acquisition parameters, and preview and acquire image data. You
can log the data to MATLAB in several formats, and also generate an AVI
file, right from the tool.

To open the tool, type imaqtool at the MATLAB command line, or select
Image Acquisition on the Apps tab in MATLAB. The tool has extensive
Help in the desktop. As you click in different panes of the user interface, the
relevant Help appears in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see “Getting
Started with the Image Acquisition Tool” on page 3-5.

1-6

Getting Started Doing Image Acquisition Programmatically

Getting Started Doing Image Acquisition Programmatically

In this section...

“Overview” on page 1-7

“Step 1: Install Your Image Acquisition Device” on page 1-8

“Step 2: Retrieve Hardware Information” on page 1-9

“Step 3: Create a Video Input Object” on page 1-12

“Step 4: Preview the Video Stream (Optional)” on page 1-13

“Step 5: Configure Object Properties (Optional)” on page 1-16

“Step 6: Acquire Image Data” on page 1-19

“Step 7: Clean Up” on page 1-23

Overview
This section illustrates the basic steps required to create an image acquisition
application by implementing a simple motion detection application. The
application detects movement in a scene by performing a pixel-to-pixel
comparison in pairs of incoming image frames. If nothing moves in the scene,
pixel values remain the same in each frame. When something moves in the
image, the application displays the pixels that have changed values.

The example highlights how you can use the Image Acquisition Toolbox
software to create a working image acquisition application with only a few
lines of code.

Note To run the sample code in this example, you must have an image
acquisition device connected to your system. The device can be a professional
grade image acquisition device, such as a frame grabber, or a generic
Microsoft® Windows® image acquisition device, such as a webcam. The code
can be used with various types of devices with only minor changes.

1-7

1 Getting Started

To use the Image Acquisition Toolbox software to acquire image data, you
must perform the following basic steps.

Step Description

Step 1: Install and configure your image acquisition device

Step 2: Retrieve information that uniquely identifies your image
acquisition device to the Image Acquisition Toolbox software

Step 3: Create a video input object

Step 4: Preview the video stream (Optional)

Step 5: Configure image acquisition object properties (Optional)

Step 6: Acquire image data

Step 7: Clean up

The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software

The Image Acquisition Toolbox product, including the Image Acquisition
Tool, requires you to have a license for the Image Processing Toolbox product
starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008b or future releases, and you have a current active license
for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

Step 1: Install Your Image Acquisition Device
Follow the setup instructions that come with your image acquisition device.
Setup typically involves:

1-8

Getting Started Doing Image Acquisition Programmatically

• Installing the frame grabber board in your computer.

• Installing any software drivers required by the device. These are supplied
by the device vendor.

• Connecting a camera to a connector on the frame grabber board.

• Verifying that the camera is working properly by running the application
software that came with the camera and viewing a live video stream.

Generic Windows image acquisition devices, such as webcams and digital
video camcorders, typically do not require the installation of a frame grabber
board. You connect these devices directly to your computer via a USB or
FireWire port.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to perform
image acquisition.

Step 2: Retrieve Hardware Information
In this step, you get several pieces of information that the toolbox needs to
uniquely identify the image acquisition device you want to access. You use
this information when you create an image acquisition object, described in
“Step 3: Create a Video Input Object” on page 1-12.

The following table lists this information. You use the imaqhwinfo function
to retrieve each item.

Device
Information Description

Adaptor name An adaptor is the software that the toolbox uses to
communicate with an image acquisition device via its
device driver. The toolbox includes adaptors for certain
vendors of image acquisition equipment and for particular
classes of image acquisition devices. See “Determining the
Adaptor Name” on page 1-10 for more information.

Device ID The device ID is a number that the adaptor assigns to
uniquely identify each image acquisition device with which

1-9

1 Getting Started

Device
Information Description

it can communicate. See “Determining the Device ID” on
page 1-11 for more information.

Note Specifying the device ID is optional; the toolbox
uses the first available device ID as the default.

Video format The video format specifies the image resolution (width
and height) and other aspects of the video stream. Image
acquisition devices typically support multiple video
formats. See “Determining the Supported Video Formats”
on page 1-11 for more information.

Note Specifying the video format is optional; the toolbox
uses one of the supported formats as the default.

Determining the Adaptor Name
To determine the name of the adaptor, enter the imaqhwinfo function at the
MATLAB prompt without any arguments.

imaqhwinfo
ans =

InstalledAdaptors: {'dcam' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

In the data returned by imaqhwinfo, the InstalledAdaptors field lists the
adaptors that are available on your computer. In this example, imaqhwinfo
found two adaptors available on the computer: 'dcam' and 'winvideo'. The
listing on your computer might contain only one adaptor name. Select the
adaptor name that provides access to your image acquisition device. For more
information, see “Determining the Device Adaptor Name” on page 4-3.

1-10

Getting Started Doing Image Acquisition Programmatically

Determining the Device ID
To find the device ID of a particular image acquisition device, enter the
imaqhwinfo function at the MATLAB prompt, specifying the name of the
adaptor as the only argument. (You found the adaptor name in the first call to
imaqhwinfo, described in “Determining the Adaptor Name” on page 1-10.) In
the data returned, the DeviceIDs field is a cell array containing the device
IDs of all the devices accessible through the specified adaptor.

Note This example uses the DCAM adaptor. You should substitute the name
of the adaptor you would like to use.

info = imaqhwinfo('dcam')
info =

AdaptorDllName: [1x77 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'dcam'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

Determining the Supported Video Formats
To determine which video formats an image acquisition device supports, look
in the DeviceInfo field of the data returned by imaqhwinfo. The DeviceInfo
field is a structure array where each structure provides information about a
particular device. To view the device information for a particular device, you
can use the device ID as a reference into the structure array. Alternatively,
you can view the information for a particular device by calling the imaqhwinfo
function, specifying the adaptor name and device ID as arguments.

To get the list of the video formats supported by a device, look at
SupportedFormats field in the device information structure. The
SupportedFormats field is a cell array of strings where each string is the
name of a video format supported by the device. For more information, see
“Determining Supported Video Formats” on page 4-6.

dev_info = imaqhwinfo('dcam',1)

1-11

1 Getting Started

dev_info =

DefaultFormat: 'F7_Y8_1024x768'
DeviceFileSupported: 0

DeviceName: 'XCD-X700 1.05'
DeviceID: 1

VideoInputConstructor: 'videoinput('dcam', 1)'
VideoDeviceConstructor: 'imaq.VideoDevice('dcam', 1)'

SupportedFormats: {'F7_Y8_1024x768' 'Y8_1024x768'}

Step 3: Create a Video Input Object
In this step you create the video input object that the toolbox uses to represent
the connection between MATLAB and an image acquisition device. Using the
properties of a video input object, you can control many aspects of the image
acquisition process. For more information about image acquisition objects, see
“Creating Image Acquisition Objects” on page 4-9.

To create a video input object, use the videoinput function at the MATLAB
prompt. The DeviceInfo structure returned by the imaqhwinfo function
contains the default videoinput function syntax for a device in the
VideoInputConstructor field. For more information the device information
structure, see “Determining the Supported Video Formats” on page 1-11.

The following example creates a video input object for the DCAM adaptor.
Substitute the adaptor name of the image acquisition device available on
your system.

vid = videoinput('dcam',1,'Y8_1024x768')

The videoinput function accepts three arguments: the adaptor name,
device ID, and video format. You retrieved this information in step 2. The
adaptor name is the only required argument; the videoinput function can
use defaults for the device ID and video format. To determine the default
video format, look at the DefaultFormat field in the device information
structure. See “Determining the Supported Video Formats” on page 1-11
for more information.

Instead of specifying the video format, you can optionally specify the name of
a device configuration file, also known as a camera file. Device configuration
files are typically supplied by frame grabber vendors. These files contain

1-12

Getting Started Doing Image Acquisition Programmatically

all the required configuration settings to use a particular camera with the
device. See “Using Device Configuration Files (Camera Files)” on page 4-14
for more information.

Viewing the Video Input Object Summary
To view a summary of the video input object you just created, enter the
variable name (vid) at the MATLAB command prompt. The summary
information displayed shows many of the characteristics of the object, such
as the number of frames that will be captured with each trigger, the trigger
type, and the current state of the object. You can use video input object
properties to control many of these characteristics. See “Step 5: Configure
Object Properties (Optional)” on page 1-16 for more information.

vid

Summary of Video Input Object Using 'XCD-X700 1.05'.

Acquisition Source(s): input1 is available.

Acquisition Parameters: 'input1' is the current selected source.

10 frames per trigger using the selected source.

'Y8_1024x768' video data to be logged upon START.

Grabbing first of every 1 frame(s).

Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.

Status: Waiting for START.

0 frames acquired since starting.

0 frames available for GETDATA.

Step 4: Preview the Video Stream (Optional)
After you create the video input object, MATLAB is able to access the image
acquisition device and is ready to acquire data. However, before you begin,
you might want to see a preview of the video stream to make sure that the
image is satisfactory. For example, you might want to change the position
of the camera, change the lighting, correct the focus, or make some other
change to your image acquisition setup.

1-13

1 Getting Started

Note This step is optional at this point in the procedure because you can
preview a video stream at any time after you create a video input object.

To preview the video stream in this example, enter the preview function
at the MATLAB prompt, specifying the video input object created in step 3
as an argument.

preview(vid)

The preview function opens a Video Preview figure window on your screen
containing the live video stream. To stop the stream of live video, you can
call the stoppreview function. To restart the preview stream, call preview
again on the same video input object.

While a preview window is open, the video input object sets the value of the
Previewing property to 'on'. If you change characteristics of the image
by setting image acquisition object properties, the image displayed in the
preview window reflects the change.

1-14

Getting Started Doing Image Acquisition Programmatically

The following figure shows the Video Preview window for the example.

Video Preview Window

To close the Video Preview window, click the Close button in the title bar
or use the closepreview function, specifying the video input object as an
argument.

closepreview(vid)

Calling closepreview without any arguments closes all open Video Preview
windows.

1-15

1 Getting Started

Step 5: Configure Object Properties (Optional)
After creating the video input object and previewing the video stream, you
might want to modify characteristics of the image or other aspects of the
acquisition process. You accomplish this by setting the values of image
acquisition object properties. This section

• Describes the types of image acquisition objects used by the toolbox

• Describes how to view all the properties supported by these objects, with
their current values

• Describes how to set the values of object properties

Types of Image Acquisition Objects
The toolbox uses two types of objects to represent the connection with an
image acquisition device:

• Video input objects

• Video source objects

A video input object represents the connection between MATLAB and a video
acquisition device at a high level. The properties supported by the video input
object are the same for every type of device. You created a video input object
using the videoinput function in step 3.

When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify. At any one
time, only one of the video source objects, called the selected source, can be
active. This is the source used for acquisition. For more information about
these image acquisition objects, see “Creating Image Acquisition Objects”
on page 4-9.

Viewing Object Properties
To view a complete list of all the properties supported by a video input object
or a video source object, use the get function. To list the properties of the
video input object created in step 3, enter this code at the MATLAB prompt.

1-16

Getting Started Doing Image Acquisition Programmatically

get(vid)

The get function lists all the properties of the object with their current values.

General Settings:
DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = Y8_1024x768-dcam-1
NumberOfBands = 1
Previewing = on
ReturnedColorSpace = grayscale
ROIPosition = [0 0 1024 768]
Running = off
Tag =
Timeout = 10
Type = videoinput
UserData = []
VideoFormat = Y8_1024x768
VideoResolution = [1024 768]
.
.
.

To view the properties of the currently selected video source object associated
with this video input object, use the getselectedsource function in
conjunction with the get function. The getselectedsource function returns
the currently active video source. To list the properties of the currently
selected video source object associated with the video input object created in
step 3, enter this code at the MATLAB prompt.

get(getselectedsource(vid))

The get function lists all the properties of the object with their current values.

1-17

1 Getting Started

Note Video source object properties are device specific. The list of properties
supported by the device connected to your system might differ from the list
shown in this example.

General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = input1
Tag =
Type = videosource

Device Specific Properties:
FrameRate = 15
Gain = 2048
Shutter = 2715

Setting Object Properties
To set the value of a video input object property or a video source object
property, you can use the set function or you can reference the object property
as you would a field in a structure, using dot notation.

Some properties are read only; you cannot set their values. These properties
typically provide information about the state of the object. Other properties
become read only when the object is running. To view a list of all the
properties you can set, use the set function, specifying the object as the
only argument.

To implement continuous image acquisition, the example sets the
TriggerRepeat property to Inf. To set this property using the set function,
enter this code at the MATLAB prompt.

set(vid,'TriggerRepeat',Inf);

To help the application keep up with the incoming video stream while
processing data, the example sets the FrameGrabInterval property to 5. This
specifies that the object acquire every fifth frame in the video stream. (You
might need to experiment with the value of the FrameGrabInterval property
to find a value that provides the best response with your image acquisition

1-18

Getting Started Doing Image Acquisition Programmatically

setup.) This example shows how you can set the value of an object property
by referencing the property as you would reference a field in a MATLAB
structure.

vid.FrameGrabInterval = 5;

To set the value of a video source object property, you must first use the
getselectedsource function to retrieve the object. (You can also get the
selected source by searching the video input object Source property for the
video source object that has the Selected property set to 'on'.)

To illustrate, the example assigns a value to the Tag property.

vid_src = getselectedsource(vid);

set(vid_src,'Tag','motion detection setup');

Step 6: Acquire Image Data
After you create the video input object and configure its properties, you can
acquire data. This is typically the core of any image acquisition application,
and it involves these steps:

• Starting the video input object — You start an object by calling the
start function. Starting an object prepares the object for data acquisition.
For example, starting an object locks the values of certain object properties
(they become read only). Starting an object does not initiate the acquiring
of image frames, however. The initiation of data logging depends on the
execution of a trigger.

The following example calls the start function to start the video input
object. Objects stop when they have acquired the requested number of
frames. Because the example specifies a continuous acquisition, you must
call the stop function to stop the object.

• Triggering the acquisition— To acquire data, a video input object must
execute a trigger. Triggers can occur in several ways, depending on how
the TriggerType property is configured. For example, if you specify an
immediate trigger, the object executes a trigger automatically, immediately
after it starts. If you specify a manual trigger, the object waits for a call
to the trigger function before it initiates data acquisition. For more
information, see “Acquiring Image Data” on page 5-2.

1-19

1 Getting Started

In the example, because the TriggerType property is set to 'immediate'
(the default) and the TriggerRepeat property is set to Inf, the object
automatically begins executing triggers and acquiring frames of data,
continuously.

• Bringing data into the MATLAB workspace — The toolbox stores
acquired data in a memory buffer, a disk file, or both, depending on the
value of the video input object LoggingMode property. To work with this
data, you must bring it into the MATLAB workspace. To bring multiple
frames into the workspace, use the getdata function. Once the data is in
the MATLAB workspace, you can manipulate it as you would any other
data. For more information, see “Working with Image Data in MATLAB
Workspace” on page 6-12.

Note The toolbox provides a convenient way to acquire a single frame of
image data that doesn’t require starting or triggering the object. See “Bringing
a Single Frame into the Workspace” on page 6-10 for more information.

Running the Example
To run the example, enter the following code at the MATLAB prompt. The
example loops until a specified number of frames have been acquired. In each
loop iteration, the example calls getdata to bring the two most recent frames
into the MATLAB workspace. To detect motion, the example subtracts one
frame from the other, creating a difference image, and then displays it. Pixels
that have changed values in the acquired frames will have nonzero values in
the difference image.

The getdata function removes frames from the memory buffer when it brings
them into the MATLAB workspace. It is important to move frames from the
memory buffer into the MATLAB workspace in a timely manner. If you do
not move the acquired frames from memory, you can quickly exhaust all the
memory available on your system.

Note The example uses functions in the Image Processing Toolbox software.

% Create video input object.

1-20

Getting Started Doing Image Acquisition Programmatically

vid = videoinput('dcam',1,'Y8_1024x768')

% Set video input object properties for this application.
% Note that example uses both SET method and dot notation method.
set(vid,'TriggerRepeat',100);
vid.FrameGrabInterval = 5;

% Set value of a video source object property.
vid_src = getselectedsource(vid);
set(vid_src,'Tag','motion detection setup');

% Create a figure window.
figure;

% Start acquiring frames.
start(vid)

% Calculate difference image and display it.
while(vid.FramesAvailable >= 2)

data = getdata(vid,2);
diff_im = imabsdiff(data(:,:,:,1),data(:,:,:,2));
imshow(diff_im);
drawnow % update figure window

end

stop(vid)

Note that a drawnow is used after the call to imshow in order to ensure that
the figure window is updated. This is good practice when updating a GUI
or figure inside a loop.

1-21

1 Getting Started

The following figure shows how the example displays detected motion. In the
figure, areas representing movement are displayed.

Figure Window Displayed by Example

Image Data in the MATLAB Workspace
In the example, the getdata function returns the image frames in the variable
data as a 480-by-640-by-1-by-10 array of 8-bit data (uint8).

whos
Name Size Bytes Class

data 4-D 3072000 uint8 array
dev_info 1x1 1601 struct array
info 1x1 2467 struct array
vid 1x1 1138 videoinput object
vid_src 1x1 726 videosource object

The height and width of the array are primarily determined by the video
resolution of the video format. However, you can use the ROIPosition
property to specify values that supersede the video resolution. Devices
typically express video resolution as column-by-row; MATLAB expresses
matrix dimensions as row-by-column.

1-22

Getting Started Doing Image Acquisition Programmatically

The third dimension represents the number of color bands in the image.
Because the example data is a grayscale image, the third dimension is 1. For
RGB formats, image frames have three bands: red is the first, green is the
second, and blue is the third. The fourth dimension represents the number of
frames that have been acquired from the video stream.

Step 7: Clean Up
When you finish using your image acquisition objects, you can remove them
from memory and clear the MATLAB workspace of the variables associated
with these objects.

delete(vid)
clear
close(gcf)

For more information, see “Deleting Image Acquisition Objects” on page 4-28.

1-23

1 Getting Started

1-24

2

Introduction

This chapter describes the Image Acquisition Toolbox software and its
components.

• “Toolbox Components Overview” on page 2-2

• “Setting Up Image Acquisition Hardware” on page 2-7

• “Previewing Data” on page 2-10

2 Introduction

Toolbox Components Overview

In this section...

“Introduction” on page 2-2

“Toolbox Components” on page 2-3

“The Image Processing Toolbox Software Required to Use the Image
Acquisition Toolbox Software” on page 2-4

“The Image Acquisition Tool (GUI)” on page 2-5

“Supported Devices” on page 2-5

Introduction
Image Acquisition Toolbox enables you to acquire images and video from
cameras and frame grabbers directly into MATLAB and Simulink. You can
detect hardware automatically, and configure hardware properties. Advanced
workflows let you trigger acquisitions while processing in-the-loop, perform
background acquisitions, and synchronize sampling across several multimodal
devices. With support for multiple hardware vendors and industry standards,
you can use imaging devices, ranging from inexpensive Web cameras to
high-end scientific and industrial devices that meet low-light, high-speed,
and other challenging requirements.

The Image Acquisition Toolbox software implements an object-oriented
approach to image acquisition. Using toolbox functions, you create an
object that represents the connection between MATLAB and specific image
acquisition devices. Using properties of the object you can control various
aspects of the acquisition process, such as the amount of video data you want
to capture. “Creating Image Acquisition Objects” on page 4-9 describes how
to create objects.

Once you establish a connection to a device, you can acquire image data by
executing a trigger. In the toolbox, all image acquisition is initiated by a
trigger. The toolbox supports several types of triggers that let you control
when an acquisition takes place. For example, using hardware triggers you
can synchronize an acquisition with an external device. “Acquiring Image
Data” on page 5-2 describes how to trigger the acquisition of image data.

2-2

Toolbox Components Overview

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the frames are acquired, the toolbox stores them in a
memory buffer. The toolbox provides several ways to bring one or more
frames of data into the workspace where you can manipulate it as you would
any other multidimensional numeric array. “Bringing Image Data into the
MATLAB Workspace” on page 6-3 describes this process.

Finally, you can enhance your image acquisition application by using event
callbacks. The toolbox has defined certain occurrences, such as the triggering
of an acquisition, as events. You can associate the execution of a particular
function with a particular event. “Using Events and Callbacks” on page 7-2
describes this process.

Toolbox Components
The toolbox uses components called hardware device adaptors to connect to
devices through their drivers. The toolbox includes adaptors that support
devices produced by several vendors of image acquisition equipment.
In addition, the toolbox includes an adaptor for generic Windows video
acquisition devices.

2-3

2 Introduction

The following figure shows these components and their relationship.

The Image Acquisition Toolbox™ Software Components

The Image Processing Toolbox Software Required to
Use the Image Acquisition Toolbox Software
The Image Acquisition Toolbox product, including the Image Acquisition
Tool, now requires you to have a license for the Image Processing Toolbox
product starting in R2008b.

If you already have the Image Processing Toolbox product, you do not need to
do anything.

If you do not have the Image Processing Toolbox product, the Image
Acquisition Toolbox software R2008a and earlier will continue to work. If you
want to use R2008b or future releases, and you have a current active license

2-4

Toolbox Components Overview

for the Image Acquisition Toolbox software, you can download the Image
Processing Toolbox product for free. New customers will need to purchase
both products to use the Image Acquisition Toolbox product.

If you have any questions, please contact MathWorks customer service.

The Image Acquisition Tool (GUI)
The functionality of the Image Acquisition Toolbox software is available in a
desktop application. You connect directly to your hardware in the tool and
can then set acquisition parameters, and preview and acquire image data.
You can log the data to MATLAB in several formats, and also generate an
AVI file, right from the tool.

To open the tool, type imaqtool at the MATLAB command line, or select
Image Acquisition on the Apps tab in MATLAB. The tool has extensive
Help in the desktop. As you click in different panes of the user interface, the
relevant Help appears in the Image Acquisition Tool Help pane.

Most of the User’s Guide describes performing tasks using the toolbox via the
MATLAB command line. To learn how to use the desktop tool, see “Getting
Started with the Image Acquisition Tool” on page 3-5.

Supported Devices
The Image Acquisition Toolbox software includes adaptors that provide
support for several vendors of professional grade image acquisition
equipment, devices that support the IIDC 1394-based Digital Camera
Specification (DCAM), and devices that provide Windows Driver Model
(WDM) or Video for Windows (VFW) drivers, such as USB and IEEE® 1394
(FireWire, i.LINK®) Web cameras, Digital video (DV) camcorders, and TV
tuner cards. For the latest information about supported hardware, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

The DCAM specification, developed by the 1394 Trade Association, describes
a generic interface for exchanging data with IEEE 1394 (FireWire) digital
cameras that is often used in scientific applications. The toolbox’s DCAM
adaptor supports Format 7, also known as partial scan mode. The toolbox
uses the prefix F7_ to identify Format 7 video format names.

2-5

http://www.mathworks.com/products/imaq

2 Introduction

Note The toolbox supports only connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the Carnegie Mellon University DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant.

You can add support for additional hardware by writing an adaptor. For more
information, see “Support for Additional Hardware” on page 12-2.

2-6

Setting Up Image Acquisition Hardware

Setting Up Image Acquisition Hardware

In this section...

“Introduction” on page 2-7

“Setting Up Frame Grabbers” on page 2-7

“Setting Up Generic Windows Video Acquisition Devices” on page 2-8

“Setting Up DCAM Devices” on page 2-8

“Resetting Your Image Acquisition Hardware” on page 2-8

“A Note About Frame Rates and Processing Speed” on page 2-8

Introduction
To acquire image data, you must perform the setup required by your
particular image acquisition device. In a typical image acquisition setup,
an image acquisition device, such as a camera, is connected to a computer
via an image acquisition board, such as a frame grabber, or via a Universal
Serial Bus (USB) or IEEE 1394 (FireWire) port. The setup required varies
with the type of device.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to acquire data.

Setting Up Frame Grabbers
For frame grabbers, also known as imaging boards, setup typically involves
the following tasks:

• Installing the frame grabber in your computer

• Installing any software drivers required by the frame grabber. These are
supplied by the device vendor.

• Connecting the camera, or other image acquisition device, to a connector
on the frame grabber

• Verifying that the camera is working properly by running the application
software that came with the frame grabber and viewing a live video stream

2-7

2 Introduction

Setting Up Generic Windows Video Acquisition
Devices
IEEE 1394 (FireWire) and generic Windows video acquisition devices that use
Windows Driver Model (WDM) or Video for Windows (VFW) device drivers
typically require less setup. Plug the device into the USB or IEEE 1394
(FireWire) port on your computer and install the device driver provided by
the vendor.

Setting Up DCAM Devices
If you intend to access a DCAM-compliant IEEE 1394 (FireWire) camera, you
must install and configure the Carnegie Mellon University (CMU) DCAM
driver. The toolbox is not compatible with any other vendor-supplied driver,
even if the driver is DCAM compliant. See “Installing the CMU DCAM Driver
on Windows” on page 13-10 for more information.

Resetting Your Image Acquisition Hardware
To return MATLAB and your image acquisition hardware to a known state,
where no image acquisition objects exist and the hardware is not configured,
use the imaqreset function.

If you connect another image acquisition device to your system after MATLAB
is started, you can use imaqreset to make the toolbox aware of the new
hardware.

A Note About Frame Rates and Processing Speed
The frame rate describes how fast an image acquisition device provides data,
typically measured as frames per second.

Devices that support industry-standard video formats must provide frames
at the rate specified by the standard. For RS170 and NTSC, the standard
dictates a frame rate of 30 frames per second (30 Hz). The CCIR and
PAL standards define a frame rate of 25 Hz. Nonstandard devices can be
configured to operate at higher rates. Generic Windows image acquisition
devices, such as webcams, might support many different frame rates.
Depending on the device being used, the frame rate might be configurable
using a device-specific property of the image acquisition object.

2-8

Setting Up Image Acquisition Hardware

The rate at which the Image Acquisition Toolbox software can process images
depends on the processor speed, the complexity of the processing algorithm,
and the frame rate. Given a fast processor, a simple algorithm, and a frame
rate tuned to the acquisition setup, the Image Acquisition Toolbox software
can process data as it comes in.

2-9

2 Introduction

Previewing Data

In this section...

“Introduction” on page 2-10

“Opening a Video Preview Window” on page 2-11

“Stopping the Preview Video Stream” on page 2-12

“Closing a Video Preview Window” on page 2-13

“Previewing Data in Custom GUIs” on page 2-13

“Performing Custom Processing of Previewed Data” on page 2-15

Introduction
After you connect MATLAB to the image acquisition device you can view the
live video stream using the Video Preview window. Previewing the video data
can help you make sure that the image being captured is satisfactory.

For example, by looking at a preview, you can verify that the lighting and
focus are correct. If you change characteristics of the image, by using video
input object and video source object properties, the image displayed in the
Video Preview window changes to reflect the new property settings.

The following sections provide more information about using the Video
Preview window.

• “Opening a Video Preview Window” on page 2-11

• “Stopping the Preview Video Stream” on page 2-12

• “Closing a Video Preview Window” on page 2-13

Instead of using the toolbox’s Video Preview window, you can display the live
video preview stream in any Handle Graphics® image object you specify. In
this way, you can include video previewing in a GUI of your own creation. The
following sections describe this capability.

• “Previewing Data in Custom GUIs” on page 2-13

• “Performing Custom Processing of Previewed Data” on page 2-15

2-10

Previewing Data

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display of up
to 16-bit image data. The Preview window was designed to only show 8-bit
data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display supports these higher bit-depth cameras. However, larger bit
data is scaled to 8-bit for the purpose of displaying previewed data. If you need
the full resolution of the data, use the getsnapshot or getdata functions.

Opening a Video Preview Window
To open a Video Preview window, use the preview function. The Video
Preview window displays the live video stream from the device. You can only
open one preview window per device. If multiple devices are used, you can
open multiple preview windows at the same time.

The following example creates a video input object and then opens a Video
Preview window for the video input object.

vid = videoinput('winvideo');
preview(vid);

The following figure shows the Video Preview window created by this
example. The Video Preview window displays the live video stream. The size
of the preview image is determined by the value of the video input object’s
ROIPosition property. The Video Preview window displays the video data at
100% magnification (one screen pixel represents one image pixel).

In addition to the preview image, the Video Preview window includes
information about the image, such as the timestamp of the video frame, the
video resolution, and the current status of the video input object.

Note Because video formats typically express resolution as width-by-height,
the Video Preview window expresses the size of the image frame as
column-by-row, rather than the standard MATLAB row-by-column format.

2-11

2 Introduction

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display of up
to 16-bit image data. The Preview window was designed to only show 8-bit
data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display supports these higher bit-depth cameras. However, larger bit
data is scaled to 8-bit for the purpose of displaying previewed data. If you need
the full resolution of the data, use the getsnapshot or getdata functions.

Stopping the Preview Video Stream
When you use the preview function to start previewing image data, the Video
Preview window displays a view of the live video stream coming from the
device. To stop the updating of the live video stream, call the stoppreview
function.

2-12

Previewing Data

This example creates a video input object and opens a Video Preview window.
The example then calls the stoppreview function on this video input object.
The Video Preview window stops updating the image displayed and stops
updating the timestamp. The status displayed in the Video Preview window
also changes to indicate that previewing has been stopped.

vid = videoinput('winvideo');
preview(vid)
stoppreview(vid)

To restart the video stream in the Video Preview window, call preview again
on the same video input object.

preview(vid)

Closing a Video Preview Window
To close a particular Video Preview window, use the closepreview function,
specifying the video input object as an argument. You do not need to stop the
live video stream displayed in the Video Preview window before closing it.

closepreview(vid)

To close all currently open Video Preview windows, use the closepreview
function without any arguments.

closepreview

Note When called without an argument, the closepreview function only
closes Video Preview windows. The closepreview function does not close any
other figure windows in which you have directed the live preview video stream.
For more information, see “Previewing Data in Custom GUIs” on page 2-13.

Previewing Data in Custom GUIs
Instead of using the toolbox’s Video Preview window, you can use the preview
function to direct the live video stream to any Handle Graphics image object.
In this way, you can incorporate the toolbox’s previewing capability in a GUI
of your own creation. (You can also perform custom processing as the live
video is displayed. For information, see “Performing Custom Processing of
Previewed Data” on page 2-15.)

2-13

2 Introduction

To use this capability, create an image object and then call the preview
function, specifying a handle to the image object as an argument. The preview
function outputs the live video stream to the image object you specify.

The following example creates a figure window and then creates an image
object in the figure, the same size as the video frames. The example then calls
the preview function, specifying a handle to the image object.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar, menubar, and figure numbering.

figure('Toolbar','none',...
'Menubar', 'none',...
'NumberTitle','Off',...
'Name','My Preview Window');

% Create the image object in which you want to display
% the video preview data. Make the size of the image
% object match the dimensions of the video frames.

vidRes = get(vid, 'VideoResolution');
nBands = get(vid, 'NumberOfBands');
hImage = image(zeros(vidRes(2), vidRes(1), nBands));

% Display the video data in your GUI.

preview(vid, hImage);

2-14

Previewing Data

When you run this example, it creates the GUI shown in the following figure.

Custom Preview

Performing Custom Processing of Previewed Data
When you specify an image object to the preview function (see “Previewing
Data in Custom GUIs” on page 2-13), you can optionally also specify a function
that preview executes every time it receives an image frame.

To use this capability, follow these steps:

1 Create the function you want executed for each image frame, called the
update preview window function. For information about this function, see
“Creating the Update Preview Window Function” on page 2-16.

2 Create an image object.

3 Configure the value of the image object’s 'UpdatePreviewWindowFcn'
application-defined data to be a function handle to your update preview
window function. For more information, see “Specifying the Update
Preview Function” on page 2-17.

4 Call the preview function, specifying the handle of the image object as
an argument.

2-15

2 Introduction

Note If you specify an update preview window function, in addition to
whatever processing your function performs, it must display the video data
in the image object. You can do this by updating the CData of the image
object with the incoming video frames. For some performance guidelines
about updating the data displayed in an image object, see Technical Solution
1-1B022.

Creating the Update Preview Window Function
When preview calls the update preview window function you specify, it passes
your function the following arguments.

Argument Description

obj Handle to the video input object being previewed

A data structure containing the following fields:

Data Current image frame specified as an
H-by-W-by-B array, where H is the image
height and W is the image width, as
specified in the ROIPosition property, and
B is the number of color bands, as specified
in the NumberOfBands property

Resolution Text string specifying the current image
width and height, as defined by the
ROIPosition property

Status String describing the status of the video
input object

event

Timestamp String specifying the time associated with
the current image frame, in the format
hh:mm:ss:ms

himage Handle to the image object in which the data is to be
displayed

The following example creates an update preview window function that
displays the timestamp of each incoming video frame as a text label in the

2-16

http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022
http://www.mathworks.com/support/solutions/data/1-1B022.html?solution=1-1B022

Previewing Data

custom GUI. The update preview window function uses getappdata to
retrieve a handle to the text label uicontrol object from application-defined
data in the image object. The custom GUI stores this handle to the text label
uicontrol object — see “Specifying the Update Preview Function” on page
2-17.

Note that the update preview window function also displays the video data by
updating the CData of the image object.

function mypreview_fcn(obj,event,himage)
% Example update preview window function.

% Get timestamp for frame.
tstampstr = event.Timestamp;

% Get handle to text label uicontrol.
ht = getappdata(himage,'HandleToTimestampLabel');

% Set the value of the text label.
set(ht,'String',tstampstr);

% Display image data.
set(himage, 'CData', event.Data)

Specifying the Update Preview Function
To use an update preview window function, store a function handle to your
function in the 'UpdatePreviewWindowFcn' application-defined data of
the image object. The following example uses the setappdata function to
configure this application-defined data to a function handle to the update
preview window function described in “Creating the Update Preview Window
Function” on page 2-16.

This example extends the simple custom preview window created in
“Previewing Data in Custom GUIs” on page 2-13. This example adds three
push button uicontrol objects to the GUI: Start Preview, Stop Preview,
and Close Preview.

In addition, to illustrate using an update preview window function, the
example GUI includes a text label uicontrol object to display the timestamp

2-17

2 Introduction

value. The update preview window function updates this text label each
time a framed is received. The example uses setappdata to store a handle
to the text label uicontrol object in application-defined data in the image
object. The update preview window function retrieves this handle to update
the timestamp display.

% Create a video input object.
vid = videoinput('winvideo');

% Create a figure window. This example turns off the default
% toolbar and menubar in the figure.
hFig = figure('Toolbar','none',...

'Menubar', 'none',...
'NumberTitle','Off',...
'Name','My Custom Preview GUI');

% Set up the push buttons
uicontrol('String', 'Start Preview',...

'Callback', 'preview(vid)',...
'Units','normalized',...
'Position',[0 0 0.15 .07]);

uicontrol('String', 'Stop Preview',...
'Callback', 'stoppreview(vid)',...
'Units','normalized',...
'Position',[.17 0 .15 .07]);

uicontrol('String', 'Close',...
'Callback', 'close(gcf)',...
'Units','normalized',...
'Position',[0.34 0 .15 .07]);

% Create the text label for the timestamp
hTextLabel = uicontrol('style','text','String','Timestamp', ...

'Units','normalized',...
'Position',[0.85 -.04 .15 .08]);

% Create the image object in which you want to
% display the video preview data.
vidRes = get(vid, 'VideoResolution');
imWidth = vidRes(1);
imHeight = vidRes(2);

2-18

Previewing Data

nBands = get(vid, 'NumberOfBands');
hImage = image(zeros(imHeight, imWidth, nBands));

% Specify the size of the axes that contains the image object
% so that it displays the image at the right resolution and
% centers it in the figure window.
figSize = get(hFig,'Position');
figWidth = figSize(3);
figHeight = figSize(4);
set(gca,'unit','pixels',...

'position',[((figWidth - imWidth)/2)...
((figHeight - imHeight)/2)...

imWidth imHeight]);

% Set up the update preview window function.
setappdata(hImage,'UpdatePreviewWindowFcn',@mypreview_fcn);

% Make handle to text label available to update function.
setappdata(hImage,'HandleToTimestampLabel',hTextLabel);

preview(vid, hImage);

2-19

2 Introduction

When you run this example, it creates the GUI shown in the following figure.
Each time preview receives a video frame, it calls the update preview window
function that you specified, which updates the timestamp text label in the
GUI.

Custom Preview GUI with Timestamp Text Label

2-20

3

Using the Image Acquisition
Tool GUI

• “The Image Acquisition Tool Desktop” on page 3-2

• “Getting Started with the Image Acquisition Tool” on page 3-5

• “Selecting Your Device in Image Acquisition Tool” on page 3-8

• “Setting Acquisition Parameters in Image Acquisition Tool” on page 3-11

• “Previewing and Acquiring Data in Image Acquisition Tool” on page 3-31

• “Exporting Data in the Image Acquisition Tool” on page 3-38

• “Saving Image Acquisition Tool Configurations” on page 3-42

• “Exporting Image Acquisition Tool Hardware Configurations to MATLAB”
on page 3-44

• “Saving and Copying Image Acquisition Tool Session Log” on page 3-46

• “Registering a Third-Party Adaptor in the Image Acquisition Tool” on page
3-49

3 Using the Image Acquisition Tool GUI

The Image Acquisition Tool Desktop

In this section...

“Opening the Tool” on page 3-2

“Parts of the Desktop” on page 3-2

Opening the Tool
Image Acquisition Toolbox functionality is available in a desktop application.
You connect directly to your hardware in the tool and can preview and acquire
image data. You can log the data to MATLAB in several formats, and also
generate a VideoWriter or AVI file, right from the tool.

The Image Acquisition Tool provides a desktop environment that integrates a
preview/acquisition area with Acquisition Parameters so that you can change
settings and see the changes dynamically applied to your image data.

To open the Image Acquisition Tool, do one of the following:

• Type imaqtool at the MATLAB command line.

• Select Image Acquisition on the Apps tab in MATLAB.

Note The right pane in the tool is the Desktop Help pane. As you work in
the tool the Help will provide information for the part of the interface that you
are working in. If the Desktop Help is closed, you can open it be selecting
Desktop > Desktop Help.

Parts of the Desktop
The Image Acquisition Tool has the following panes.

3-2

The Image Acquisition Tool Desktop

• Hardware Browser – Shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser.
All of the formats the device supports are listed under the device. Each
device’s default format is indicated in parentheses. Select the device format
or camera file you want to use for the acquisition. When the format is
selected, you can then set acquisition parameters and preview your data.

3-3

3 Using the Image Acquisition Tool GUI

See “Selecting Your Device in Image Acquisition Tool” on page 3-8 for more
information about using the Hardware Browser.

• Preview window – Use to preview and acquire image data from the
selected device format, and to export data that has been acquired in
memory to a MAT-file, the MATLAB Workspace, VideoWriter, or to tools
provided by the Image Processing Toolbox software. See “Previewing
and Acquiring Data in Image Acquisition Tool” on page 3-31 for more
information about using the Preview window.

• Acquisition Parameters – Use these tabs to set up general acquisition
parameters, such as frames per trigger and color space, device-specific
properties, logging options, triggering options, and region of interest.
Settings you make on any tab will apply to the currently selected device
format in the Hardware Browser. See “Setting Acquisition Parameters
in Image Acquisition Tool” on page 3-11 for more information about using
the Acquisition Parameters. Also see the Help for each tab while using
the tool for more details. When you click any tab, the help for that tab will
appear in the Desktop Help pane.

• Information pane – Displays a summary of information about the
selected node in the Hardware Browser.

• Session Log – Displays a dynamically generated log of the commands that
correspond to actions taken in the tool. You can save the log to a MATLAB
code file or copy it.

• Desktop Help – Displays Help for the pane of the desktop that has focus.
Click inside a pane for help on that area of the tool. For the Acquisition
Parameters pane, click each tab to display information about the settings
for that tab.

If the Desktop Help is closed, you can open it by selecting Desktop >
Desktop Help.

3-4

Getting Started with the Image Acquisition Tool

Getting Started with the Image Acquisition Tool
This section describes an example of the basic work flow of using the Image
Acquisition Tool to preview, acquire, and save image data. You don’t need to
do every step shown here, and you can change the order of some steps.

For information on the parts of the Desktop GUI or how to open the Tool, see
“The Image Acquisition Tool Desktop” on page 3-2.

1 Decide which device you want to work with.

The Hardware Browser shows the image acquisition devices currently
connected to your system. If the device you want to use is not connected
to your system, plug it in and then select Tools > Refresh Image
Acquisition Hardware to display the new device in the Hardware
Browser.

2 Choose the format to work with.

The nodes listed under the device name are the formats the device supports.
They may correspond to the different resolutions and color spaces that your
device supports, or to different video standards or camera configurations.
This information comes from your device adaptor. Select the format you
want to use.

3 Preview to check that the device is working and the image is what you
expect.

Click the Start Preview button.

If necessary, physically adjust the device to achieve the desired image area,
or use the Region of Interest tab to define the acquisition region.

4 Decide how many frames you want to acquire.

The number of frames that will be acquired when you start the acquisition
is dependent on what is set in the Frames Per Trigger field on the
General tab and the Number of Triggers field on the Triggering
tab. For example, if you set Frames Per Trigger to 4 and Number of
Triggers to 2, the total number of frames acquired will be 8.

3-5

3 Using the Image Acquisition Tool GUI

If you just want a snapshot of one frame, leave the default settings of 1 in
both of those fields. If you want a specific number of frames, use the fields
to set it.

Alternatively, you can set the tool to acquire continuously and use
the buttons in the Preview Window to manually start and stop the
acquisition. This is discussed in a later step.

5 Set any general or device-specific parameters you need to set, on those tabs
of the Acquisition Parameters pane, or use the default settings.

6 Choose your log mode, which determines where the acquisition data is
stored.

On the Logging tab, use the Log To field to choose to log to memory, disk,
or both. Disk logging results in a saved VideoWriter file. If you choose
memory logging, you can export your data after the acquisition using the
Export Data button on the Preview Window.

For more information on logging, see the Help for the Logging tab in the
Desktop Help pane in the tool.

7 Start the acquisition by clicking the Start Acquisition button.

– If you set Trigger Type (on the Triggering tab) to Immediate, the tool
will immediately start logging data.

– If you set Trigger Type to Manual, click the Trigger button when you
want to start logging data.

8 Stop the acquisition.

– If you set Frames Per Trigger (on the General tab) to 1 or any other
number, your acquisition will stop when that number of frames is reached.

– If you set Frames Per Trigger to Infinite, click the Stop Acquisition
button to stop the acquisition.

Note that you can also click Stop Acquisition to abort an acquisition
if number of frames was specified.

9 Optionally you can export data that was saved to memory.

3-6

Getting Started with the Image Acquisition Tool

You can export the data that has been acquired in memory to a MAT-file,
the MATLAB Workspace, VideoWriter, or to the Image Tool, Image File,
or Movie Player tools that are provided by the Image Processing Toolbox
software using the Export Data button. For more information, see the
“Exporting Data” section of the Desktop Help on the Preview Window
in the Desktop Help pane in the tool.

10 Optionally you can save your configuration(s), using the File > Save
Configuration or File > Export Hardware Configuration menus. For
more information about these commands, see the “Image Acquisition Tool
Menus” section of the Help on the Hardware Browser in the Desktop
Help pane in the tool.

3-7

3 Using the Image Acquisition Tool GUI

Selecting Your Device in Image Acquisition Tool

In this section...

“Selecting a Device and Format” on page 3-8

“Adding New Hardware” on page 3-9

“Using a Camera File” on page 3-10

Selecting a Device and Format
The Hardware Browser pane shows the image acquisition devices currently
connected to your system. Each device is a separate node in the browser. All
of the formats the device supports are listed under the device. Each device’s
default format is indicated in parentheses. The format information displayed
under a device comes from the device’s adaptor.

3-8

Selecting Your Device in Image Acquisition Tool

Select the device format or camera file you want to use for the acquisition by
clicking its name in the tree. When the format is selected, you can then set
acquisition parameters and preview your data.

Adding New Hardware
When you open the Image Acquisition Tool, the Hardware Browser
automatically shows the image acquisition devices supported by the toolbox
that are currently connected to your system. If you plug a new device in
while the Image Acquisition Tool is open, select Tools > Refresh Image

3-9

3 Using the Image Acquisition Tool GUI

Acquisition Hardware to display the new device in the Hardware
Browser.

Using a Camera File
If your device supports the use of a camera file, also known as a device
configuration file, you can select it under the device name in the Hardware
Browser. For example, some frame grabbers support them.

Under the device name in theHardware Browser, you would see a node that
says Click to add camera file... if the device supports the use of camera files.

To use a camera file:

1 In the Hardware Browser, single-click the node under your device name
that says Click to add camera file....

2 In the Specify camera file dialog box, type the path and name of the file, or
click the Browse button to locate it, and then click OK.

The camera file will then become a new node under the device, similar
to any of the formats listed under a device. You can then set acquisition
parameters, preview, and acquire data using it.

Note The tool ignores hardware trigger configurations included in a
camera file. To configure hardware triggering, use the Trigger tab in the
Acquisition Parameters pane.

3-10

Setting Acquisition Parameters in Image Acquisition Tool

Setting Acquisition Parameters in Image Acquisition Tool

In this section...

“Using the Acquisition Parameters Pane” on page 3-11

“Setting Frames Per Trigger” on page 3-12

“Setting the Color Space” on page 3-13

“Setting Device-Specific Parameters” on page 3-13

“Logging Your Data” on page 3-16

“Setting Up Triggering” on page 3-21

“Setting a Region of Interest” on page 3-24

“Restoring Default Parameters” on page 3-30

Using the Acquisition Parameters Pane
The tool allows you to set acquisition parameters directly in the desktop using
the Acquisition Parameters pane. Settings you make will apply to the
currently selected device format in the Hardware Browser.

The Acquisition Parameters pane contains the following tabs:

• General – Use to set up general acquisition parameters, such as frames
per trigger and color space.

• Device Properties – Use to view or change device-specific properties.

• Logging – Use to set up logging options, such as logging mode, which
determines whether your acquired data is logged to memory, disk, or both.
If you want to generate a VideoWriter file of your data, use the Disk
Logging option on this tab.

• Triggering – Use to set up triggering options, such as number of triggers
and trigger type. If you want to do manual triggering using the Trigger
button, use the Trigger Type option on this tab.

• Region of Interest – Use to set a Region of Interest (ROI) if you only
want to use part of an image.

3-11

3 Using the Image Acquisition Tool GUI

For more detailed information about the settings on each tab, see the Help
topic for the tab while using the tool. When you click a tab, the corresponding
topic will appear in the Desktop Help pane.

Note Once you have changed parameters of a device, you can restore the
device’s default parameters by selecting the device format in the Hardware
Browser and right-clicking Clear Selected Hardware Configuration.

Setting Frames Per Trigger
The Frames Per Trigger field on the General tab is used to set the number
of frames per trigger you want to acquire.

• If you want your acquisition to be a specific number of frames per trigger,
use the default of 1 frame, or use the arrows to select the number of frames
or type in the number.

• If you want to acquire frames continuously, set the Frames Per Trigger
to infinite and then use the Stop Acquisition button to stop the
acquisition, or do manual triggering using the Triggering tab.

3-12

Setting Acquisition Parameters in Image Acquisition Tool

The number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if
you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames acquired will be 8.

Note that if you set Frames Per Trigger to infinite, you cannot set
Number of Triggers on the Triggering tab.

Note Some devices need a few frames to warm up, or may always skip the
first frame. If your device does that, change the number of frames accordingly
to adjust for that. You can also adjust for camera warm-up by using manual
triggering on the Triggering tab.

Setting the Color Space
Use Color Space on the General tab to set the color space for the selected
device format. The Returned Color Space field has three options: rgb,
YCbCr, and grayscale. The setting that is your device format’s default color
space is shown as the default. You can use the arrow to select another setting.

Additionally, if the default color space is grayscale, a value of bayer will
be available in the Returned Color Space field for some devices, and the
Bayer Sensor Alignment field will also be displayed. Use the drop-down
list to select one of the four possible sensor alignments. This feature allows
the tool to demosaic Bayer patterns returned by the hardware and interpolate
them into standard RGB color images. For more information about this
feature, see the BayerSensorAlignment property reference page.

Setting Device-Specific Parameters
View or change device-specific properties using the Device Properties tab.
The selected device’s properties appear in the Properties area. The specific
properties that appear depend on your device.

3-13

3 Using the Image Acquisition Tool GUI

The Selected source field specifies the name of the selected source for
the current device. Many device adaptors only have one input source, so
for example, this might show something like input1, port1, or input0 by
default. If your device supports multiple source names, they will appear in
the drop-down list.

Use the Properties area to view or edit properties:

• If a property has an edit box or slider, that value is editable.

• If a property has an arrow indicating a drop-down list, then you can select
a value from the list.

• If a property has a value listed that is grayed out, then that value is not
currently editable.

Changes you make in the Properties area are applied to your acquisition
or preview dynamically. For example, to change the exposure for the camera
you are using, edit the value in the Exposure property text field or use the
slider to change it. You will immediately see the change in the Preview
window if you are previewing at the time, or in the next acquisition when
you click the Start Acquisition button.

3-14

Setting Acquisition Parameters in Image Acquisition Tool

Click the Reset to defaults button to undo any modifications you made and
restore the default settings of the device.

Property Help

To get help on any of the properties in the Device Properties tab, right-click
a property and select What’s This?. A Help window opens and displays the
help for the selected property, as well as the rest of the properties, which
are available by scrolling. This is the same information as the device help
you access using the imaqhelp command. For more detailed information on
device-specific properties, see your device’s documentation.

Note About Frame Rate

If FrameRate appears in the Properties area, that means your device has a
FrameRate property. The information in the table comes from your device.
The value set there will be the frame rate that your device uses, in frames
per second.

If FrameRate does not appear in the list, your device does not support that
property.

3-15

3 Using the Image Acquisition Tool GUI

Logging Your Data
Set logging options using the Logging tab. This determines where your data
is logged to when you do an acquisition.

Use the Log to options to select where to log your acquisition. Select one
of the following:

• Memory— Acquisition is logged to memory. This means that the acquired
data that you do not otherwise save (using Export Data) will be logged
to your system’s memory, and will be available to you only during the
acquisition session. The data will be lost if you do another acquisition, or
you close the tool without exporting the data. This is the default setting.

• Disk — Acquisition is logged to disk as a VideoWriter file, in the location
you specify in the Disk logging area. This means that the acquired data
will be logged to disk and will be available to you there after the acquisition
session. After selecting Disk, the Disk logging area becomes editable and
you can enter or browse to the location and name the file.

3-16

Setting Acquisition Parameters in Image Acquisition Tool

• Disk and memory — Acquisition will be logged to both disk, in the
location you specify in the Disk logging area, and memory.

Memory Logging
If you select Memory or Disk and memory in the Log to options, the
Memory limit field displays how much memory is available on your system.

This equals the total number of bytes that image acquisition frames can
occupy in memory. By default, the tool sets this limit to equal all available
physical memory when you first use the tool, or 1 GB, whichever is less.

Disk Logging
If you select Disk or Disk and memory in the Log to options, the Disk
logging area becomes editable so you can designate a file and location to
save to.

Note Disk logging generates a VideoWriter file. If you select a VideoWriter
profile that generates an AVI file, note that AVI files are limited to a bit-depth
of 8 bits per pixel for each band. If you have higher bit data, you should not log
it to an AVI file because the AVI format is restricted to 8-bit data. If you log
higher bit data to an AVI file, it will be scaled and then logged as 8-bit data.

To use disk logging:

1 Click the Browse button to select a location for the file, or enter the name
of the location.

2 In the Save dialog box, browse to the location and then enter a name in the
File name field, and click Save.

Uncompressed AVI is the default profile for color devices and Grayscale
AVI is the default profile for monochrome devices, so the .avi extension is
appended to the name on the Logging tab initially, and the other fields
become editable. You can change the profile in step 4.

3 Optionally select Automatically increment filename if you want
the tool to name subsequent acquisitions using the same root name,

3-17

3 Using the Image Acquisition Tool GUI

plus an incremented number. For example, if you enter the file name
experiment.avi and then select this option, it will be replaced by
experiment_0001.avi, followed by experiment_0002.avi, etc.

This option is useful if you need to acquire multiple videos of one or more
subjects. For example, a lab technician might want to acquire 10 seconds of
video on a group of five different cultures and save them for later analysis.
The technician may want resulting file names such as sample_0001.avi,
sample_0002.avi, etc.

4 You can use any of the profiles offered by VideoWriter. Accept the default
profile (Uncompressed AVI for color devices and Grayscale AVI for
monochrome devices) or select another. Currently supported profiles are:

• 'Motion JPEG 2000' — Compressed Motion JPEG 2000 file. Can log
single-banded (grayscale) data as well as multi-byte data.

• 'Archival'— Motion JPEG 2000 file with lossless compression.

• 'Motion JPEG AVI'— Compressed AVI file using Motion JPEG codec.

• 'Uncompressed AVI'— Uncompressed AVI file with RGB24 video.

• 'MPEG-4' — Compressed MPEG-4 file with H.264 encoding (systems
with Windows 7 or Mac OS X 10.7 and later).

• 'Grayscale AVI'— Uncompressed AVI file with grayscale video. Only
used for monochrome devices.

• 'Indexed AVI' — Uncompressed AVI file with indexed video. Only
used for monochrome devices.

5 Additional logging options appear dynamically after you select a profile.

If you select Motion JPEG 2000 or Archival as your profile, you can set the
Compression Ratio, Frame Rate, Lossless Compression, and MJ2
Bit Depth options. Accept the default values or change them.

If you select Motion JPEG AVI or MPEG-4 as your profile, you can set the
Frame Rate and Quality options. Accept the default values or change
them.

If you select Uncompressed AVI or Grayscale AVI as your profile, you can
set the Frame Rate option. Accept the default value or change it.

3-18

Setting Acquisition Parameters in Image Acquisition Tool

If you select Indexed AVI as your profile, you can set the Frame Rate and
Colormap options. Accept the default value for Frame Rate or change
it. You must enter a Colormap value. See the “VideoWriter Options”
section below for more information.

VideoWriter Options

• Compression Ratio is a number greater than 1 that specifies the target
ratio between the number of bytes in the input image and the number
of bytes in the compressed image. The data is compressed as much as
possible, up to the specified target. This is only available for objects
associated with Motion JPEG 2000 files. The default is 10.

• Frame Rate is the rate of playback for the video in frames per second.
The default is 30. If your device has a set frame rate, that will be used
instead.

• Lossless Compression is a Boolean value (logical true or false) only
available for objects associated with Motion JPEG 2000 files. If you
select true, VideoWriter uses reversible mode so that the decompressed
data is identical to the input data, and ignores any specified value for
CompressionRatio. The default is false for the Motion JPEG 2000
profile, and true for the Archival profile.

• MJ2 Bit Depth is the number of least significant bits in the input image
data, from 1 to 16. This is only available for objects associated with
Motion JPEG 2000 files. If you do not specify a value, VideoWriter sets
the bit depth based on the input data type. For example, if the input
data is an array of uint8 or int8 values, MJ2BitDepth is 8.

• Quality is a number from 0 to 100. Higher quality numbers result in
higher video quality and larger file sizes. Lower quality numbers result
in lower video quality and smaller file sizes. Only available for objects
associated with the Motion JPEG AVI profile. The default is 75.

• Colormap is a value that specifies the intensity of red, green, and
blue for the image. Type in a value, such as hsv(128), or the name of
one of the built-in MATLAB colormaps, such as jet or hot. For a list
of the built-in colormaps, see the colormap function in the MATLAB
documentation.

6 After setting your profile and options, start your acquisition to log a
VideoWriter file to disk.

3-19

3 Using the Image Acquisition Tool GUI

Note about bit size of AVI files

AVI files are limited to a bit depth of 8 bits per pixel for each band. If you
have higher bit data, you should not log it to a profile that creates an AVI file
because the AVI format is restricted to 8-bit data. If you log higher bit data to
an AVI file, it will be scaled and then logged as 8-bit data. The Archival and
Motion JPEG 2000 profiles do not have this issue.

3-20

Setting Acquisition Parameters in Image Acquisition Tool

Setting Up Triggering
Use the Triggering tab to set up triggering options.

The total number of frames that will be acquired when you start an acquisition
depends on what is set in the Frames Per Trigger field on the General tab
and the Number of Triggers field on the Triggering tab. For example, if
you set Frames Per Trigger to 4 and Number of Triggers to 2, the total
number of frames in the acquisition will be 8.

Selecting the Number of Triggers
If you want to do an acquisition that is comprised of a finite number of frames,
set the Number of Triggers to any number, or use the default of 1 trigger.

If you want to control the start and stop of the acquisition, regardless of the
number of frames acquired, select infinite. With an infinite number of
triggers, you stop the acquisition manually by clicking the Stop Acquisition
button in the Preview window.

Selecting the Trigger Type
The default of Immediate means that when you start an acquisition using the
Start Acquisition button, the acquisition begins immediately.

3-21

3 Using the Image Acquisition Tool GUI

If you change the setting to Manual, the Trigger button is activated in the
Preview window, and you use it to start the acquisition.

To perform manual triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.

3 Select Manual in the Trigger Type field on the Triggering tab.

4 Click the Start Acquisition button to get live feed from the device.

The Trigger button is activated in the Preview window once the
acquisition starts.

5 Click the Trigger button when you want to start logging data.

If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the
Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition
button to stop the acquisition.

If your device supports hardware triggering, that option will also appear
in the Trigger Type field.

To perform hardware triggering:

1 Select your device format and optionally click Start Preview to preview
the device.

2 Optionally set any acquisition parameters and stop the preview.

3 Select Hardware in the Trigger Type field on the Triggering tab.

3-22

Setting Acquisition Parameters in Image Acquisition Tool

4 Select your Trigger Source. This indicates the hardware source that is
monitored for trigger conditions. When the condition specified in Trigger
Condition is met, the trigger is executed and the acquisition starts.
Trigger Source is device-specific. The drop-down list will show the
mechanisms your particular device uses to generate triggers. For example,
it might be something like Port0 and Port1, or OptoTrig and TTL.

5 Select your Trigger Condition. This specifies the condition that must
be met, via the Trigger Source, before a trigger event occurs. Trigger
Condition is device-specific. The drop-down list will show the conditions
your particular device uses to generate triggers. For example, it might be
something like risingEdge and fallingEdge.

6 Click the Start Acquisition button to get live feed from the device.

7 When the Trigger Condition is met, the acquisition begins.

If you have a defined number of triggers (not infinite), then the acquisition
will stop when you have acquired that number of frames, based on the
Frames Per Trigger field on the General tab.

If Number of Triggers is set to infinite, use the Stop Acquisition
button to stop the acquisition.

3-23

3 Using the Image Acquisition Tool GUI

Setting a Region of Interest
By default your acquisition will consist of the entire frame that the device
acquires, which is equal to the selected format’s resolution. If you want to
acquire a portion of the frame, use the Region of Interest tab to set the
desired region. The ROI window defines the actual size of the frame logged by
the tool, measured with respect to the top-left corner of an image frame.

You can set a Region of Interest (ROI) manually by using the Manual
Configuration settings on the Region of Interest tab, or interactively in
the Preview Window.

Setting Region of Interest Manually
To set up an ROI manually using the Manual Configuration field on the
Region of Interest tab:

1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Adjust one or more of the X-Offset, Y-Offset, Width, or Height settings
until you reach the desired region.

3-24

Setting Acquisition Parameters in Image Acquisition Tool

Use the arrows in each field to adjust the numbers. The preview resizes
as you make changes.

3 When the region is the desired size, start your acquisition by clicking the
Start Acquisition button.

Note: You cannot adjust the ROI after starting the acquisition.

Setting Region of Interest Interactively
You can also set a region of interest interactively while previewing your image.

To set a region of interest interactively:

1 Start your preview by clicking the Start Preview button in the Preview
Window.

2 Click the Select Region of Interest button in the top-left corner of the
Preview Window to activate the interactive ROI feature.

3-25

3 Using the Image Acquisition Tool GUI

Your cursor becomes a selection tool.

Note that the Select Region of Interest button is enabled only during
preview mode.

3-26

Setting Acquisition Parameters in Image Acquisition Tool

3 Position the cursor at one of the edges of the region you want to capture and
click the left mouse button. Hold the button while dragging the selection
tool over the image to outline the region you want to capture.

4 Release the mouse button to freeze the region.

The region is not set until you take action to commit it.

3-27

3 Using the Image Acquisition Tool GUI

5 If the selected area is the region you want to use, start your acquisition by
clicking the Start Acquisition button.

In this case, the region appears as follows.

3-28

Setting Acquisition Parameters in Image Acquisition Tool

Before starting the acquisition, if you want to adjust the region further, you
can drag the selected region around while still in selection mode. You can
also drag any of the handles on the region outline to change the dimensions
of the region. You can then commit the region by pressing Enter or using
the right-click menu Commit Region of Interest inside the region. You

3-29

3 Using the Image Acquisition Tool GUI

can also commit a region by pressing the space bar or double-clicking inside
the selection, or starting the acquisition.

You can clear the drawn region before you commit it by single-clicking
anywhere in the Preview Window outside of the selected area. You will
still be in ROI selection mode. If you want to clear the selected region and
exit ROI selection mode, press the Delete key, press the Escape key, or
use the right-click menu Exit Region of Interest Mode inside the region.

Note: If you start another acquisition with the same device, the ROI that you
set will remain the default that is used in subsequent acquisitions. To reset to
the original image size, click the Reset Region of Interest to Maximum
button in the Preview Window or the Reset button on the Region of
Interest tab.

Restoring Default Parameters
Once you have changed parameters of a device, you can restore the device’s
default parameters by selecting the device format in the Hardware Browser
and right-clicking Clear Selected Hardware Configuration. That clears
any changes you have made and resets the default parameters of that device
format.

If you want to save a configuration before clearing it, first select Export
Selected Hardware Configuration from the right-click menu.

3-30

Previewing and Acquiring Data in Image Acquisition Tool

Previewing and Acquiring Data in Image Acquisition Tool

In this section...

“The Preview Window” on page 3-31

“Previewing Data” on page 3-33

“Acquiring Data” on page 3-34

The Preview Window
The Preview window displays the image data when you preview or acquire
data.

3-31

3 Using the Image Acquisition Tool GUI

Use the buttons in the Preview window to:

• Preview your image. See “Previewing Data” on page 3-33 for more
information.

3-32

Previewing and Acquiring Data in Image Acquisition Tool

• Acquire data. See “Acquiring Data” on page 3-34 for more information.

• Export data. See “Exporting Data in the Image Acquisition Tool” on page
3-38 for more information.

• Set Region of Interest. See “Setting a Region of Interest” on page 3-24
for more information.

Below the area that displays the frames you will see text messages with
information relative to the current state of the window. For example in the
figure above, that text indicates that all the frames that were acquired are
being displayed. After you start and stop a preview, the text will indicate
that the tool is ready to acquire data.

During an acquisition, a running timer appears under the display area that
indicates the actual time of the frame acquisition.

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool now support the display
of up to 16-bit image data. The Preview window was designed to only show
8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data. The Preview
window display now supports these higher bit-depth cameras.

Previewing Data
To preview data:

1 Select the device and format in the Hardware Browser.

2 Click the Start Preview button to test your device.

3 If necessary, adjust the device to achieve the desired image.

4 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for
the acquisition.

5 Set any other acquisition parameters to adjust the quality of the image
or other acquisition factors.

3-33

3 Using the Image Acquisition Tool GUI

You are now ready to start the acquisition.

Acquiring Data
To acquire data:

1 Select the device and format in the Hardware Browser. The Hardware
Browser shows the image acquisition devices currently connected to your
system. If the device you want to use is not connected to your system, plug
it in and then select Tools > Refresh Image Acquisition Hardware to
display the new device in the Hardware Browser.

The nodes listed under the device name are the formats the device supports.
They may correspond to the different resolutions and color spaces that your
device supports, or to different video standards or camera configurations.
This information comes from your device adaptor. Select the format you
want to use.

See “Selecting Your Device in Image Acquisition Tool” on page 3-8 for more
information about devices and formats.

2 Use the Preview feature to test and set up your device by clicking the Start
Preview button. If necessary, physically adjust the device to achieve the
desired image area, or use the Region of Interest tab of the Acquisition
Parameters pane to constrain the image.

See “Previewing Data” on page 3-33 for more information on previewing.

3 Set the Frames Per Trigger on the General tab and the Number of
Triggers on the Triggering tab, to set the total number of frames for the
acquisition, if you did not do so while previewing.

For example, if you set Frames Per Trigger to 4 and Number of
Triggers to 2, the total number of frames acquired will be 8.

If you just want a snapshot of one frame, leave the default settings of 1 in
both fields. If you want a specific number of frames, use the fields to set it.

Alternatively, you can set the tool to acquire continuously and use
the buttons in the Preview window to manually start and stop the
acquisition.

3-34

Previewing and Acquiring Data in Image Acquisition Tool

4 Set any necessary acquisition parameters if you did not do so while
previewing. See “Setting Acquisition Parameters in Image Acquisition
Tool” on page 3-11 for more information.

5 Choose your log mode, which determines where the acquisition data is
stored.

On the Logging tab, use the Log To field to choose to log to memory, disk,
or both. Disk logging results in a saved VideoWriter file. If you choose
memory logging, you can export your data after the acquisition using the
Export Data button on the Preview window.

For more information about logging, see “Logging Your Data” on page 3-16.

6 Start the acquisition by clicking the Start Acquisition button.

• If you set Trigger Type (on the Triggering tab) to Immediate, the tool
will immediately start logging data.

• If you set Trigger Type to Manual, click the Trigger button when
you want to start logging data. For more information about manual
triggering, see “Setting Up Triggering” on page 3-21.

7 Stop the acquisition:

• If you set Frames Per Trigger (on the General tab) to 1 or any
other number, your acquisition will stop when that number of frames
is reached.

• If you set Frames Per Trigger to infinite, click the Stop Acquisition
button to stop the acquisition.

Note that you can also click Stop Acquisition to abort an acquisition if
the number of frames was specified.

When the acquisition stops, if you logged to memory or disk and memory, the
Preview window will display all or some of the frames of the acquisition.
The window can show up to nine frames. If you acquire more than nine
frames, it will display frames at an even interval based on the total number of
frames. The montage of nine frames are indexed linearly from the acquired
images. The text under the images will list which frames are shown. You can
also hover your cursor over each frame to see which frame number it is, as
shown in the following figure.

3-35

3 Using the Image Acquisition Tool GUI

3-36

Previewing and Acquiring Data in Image Acquisition Tool

If Images Are Blurry or Dark
If the first one or more frames of your acquisition are blurry, black, or of low
quality, your camera may need to warm up before you capture frames.

You can allow for device warm-up by using manual triggering. This allows
you to start the acquisition after the device has warmed up and is acquiring
image data that meets your needs.

To use manual triggering, go to the Triggering tab of the Acquisition
Parameters pane and select Manual in the Trigger Type field.

For more detailed instructions about manual triggering, see “Selecting the
Trigger Type” on page 3-21.

For more information about troubleshooting specific devices, see
“Troubleshooting Overview” on page 13-3 in the Troubleshooting chapter.

3-37

3 Using the Image Acquisition Tool GUI

Exporting Data in the Image Acquisition Tool
You can export the data that has been acquired in memory to a MAT-file, the
MATLAB Workspace, VideoWriter, or other options.

To export the acquisition data:

1 Click the Export Data button in the Preview window to export the last
acquisition that was logged to memory.

2 In the Data Exporter dialog box, select MAT-File, MATLAB Workspace, or
one of the other options in the Data Destination field. You can choose
Image Tool or Image File for single-frame acquisitions.

These two options are provided by the Image Processing Toolbox software.
The Movie Player tool is also provided by the Image Processing Toolbox
software and is only available for multiple-frame acquisitions. VideoWriter
is part of core MATLAB and is recommended.

3 If you selected MAT-File or MATLAB Workspace, then enter a name for the
new variable in the Variable Name field, and click OK.

3-38

Exporting Data in the Image Acquisition Tool

4 If you selected VideoWriter, you need to select a profile from the Profile
list. For information on the profiles, see “Disk Logging” on page 3-17.

The VideoWriter Parameters dialog box opens after you select a file name
and profile and click OK. If you selected Motion JPEG 2000 or Archival as
your profile, you can set the Compression Ratio, Frame Rate, Lossless
Compression, and MJ2 Bit Depth options. Accept the default values
or change them.

If you selected Motion JPEG AVI as your profile, you can set the Frame
Rate and Quality options. Accept the default values or change them.

If you selected Uncompressed AVI as your profile, you can set the Frame
Rate option. Accept the default value or change it.

3-39

3 Using the Image Acquisition Tool GUI

VideoWriter Options

• Compression Ratio is a number greater than 1 that specifies the target
ratio between the number of bytes in the input image and the number
of bytes in the compressed image. The data is compressed as much as
possible, up to the specified target. This is only available for objects
associated with Motion JPEG 2000 files. The default is 10.

• Frame Rate is the rate of playback for the video in frames per second.
The default is 30.

• Lossless Compression is a Boolean value (logical true or false) only
available for objects associated with Motion JPEG 2000 files. If you
select true, VideoWriter uses reversible mode so that the decompressed
data is identical to the input data, and ignores any specified value for
CompressionRatio. The default is false for the Motion JPEG 2000
profile, and true for the Archival profile.

• MJ2 Bit Depth is the number of least significant bits in the input image
data, from 1 to 16. This is only available for objects associated with
Motion JPEG 2000 files. If you do not specify a value, VideoWriter sets
the bit depth based on the input data type. For example, if the input
data is an array of uint8 or int8 values, MJ2BitDepth is 8.

• Quality is a number from 0 to 100. Higher quality numbers result in
higher video quality and larger file sizes. Lower quality numbers result

3-40

Exporting Data in the Image Acquisition Tool

in lower video quality and smaller file sizes. Only available for objects
associated with the Motion JPEG AVI profile. The default is 75.

5 If you exported to the MATLAB Workspace, the dialog box closes and the
data is saved to the Workspace.

If you exported to a MAT-File, the dialog box closes and the file is saved to
the location you specified in the Data Exporter dialog box.

If you exported to Image Tool, Image File, or Movie Player, the file
immediately opens in that tool.

If you exported to VideoWriter, the file is created and saved in the location
you specified in the Data Exporter dialog box.

3-41

3 Using the Image Acquisition Tool GUI

Saving Image Acquisition Tool Configurations
You can save the configuration information about any of your device formats.
This includes any parameters you set on any of the tabs in the Acquisition
Parameters pane. Then when you return to the tool, you can load the
configuration so that you do not have to reset those parameters.

To save a configuration:

1 Select File > Save Configuration.

The Save Configuration dialog box opens.

2 Decide what configuration(s) to save.

The Save Configuration dialog box lists the currently selected device
format, as well as any others you selected in the Hardware Browser
during the tool session. All formats are selected by default, meaning their
configurations will be saved. If you do not want to save a configuration,
clear it from the list.

3 Click Save.

The Save File dialog box opens.

4 Enter a file name and click Save.

3-42

Saving Image Acquisition Tool Configurations

The configuration is saved to an Image Acquisition Tool (IAT) file in the
location you specified.

You can then open the saved configuration file in a future tool session by
selecting File > Open Configuration. In the Open Configuration dialog box,
browse to an IAT file and click Open.

Note You can also export hardware configuration information to other
formats such as a MATLAB code file or a MAT-file that can be accessed from
MATLAB. See “Exporting Image Acquisition Tool Hardware Configurations
to MATLAB” on page 3-44.

3-43

3 Using the Image Acquisition Tool GUI

Exporting Image Acquisition Tool Hardware Configurations
to MATLAB

You can export the video input objects and their configured parameters from
the tool to a choice of multiple formats. You can then access the video object
in MATLAB.

To export a hardware configuration:

1 Select File > Export Hardware Configuration.

The Export Hardware Configuration dialog box opens.

2 Select the file format from the Object destination list.

• MATLAB Workspace saves the video input object to the MATLAB
Workspace for the duration of the MATLAB session. (You can then save
it before exiting MATLAB if you want to retain it.)

• MATLAB Code File is the same as the File > Generate MATLAB Code
File command. It generates an MATLAB code file containing the video
input object and its configured parameters. You could then incorporate
the MATLAB code file into other MATLAB code or projects.

• MAT-File saves the video input object and its parameters to a MAT-file.

3-44

Exporting Image Acquisition Tool Hardware Configurations to MATLAB®

3 Decide what object configuration(s) to export.

The Object Exporter dialog box lists the currently selected device format, as
well as any others you selected in the Hardware Browser during the tool
session. All formats are selected by default, meaning their configurations
will be saved. If you do not want to save a configuration, clear it from the
list.

4 Click Save.

If you exported to the MATLAB Workspace, the dialog box closes and the
data is saved to the MATLAB Workspace.

5 If you export to a MAT-file or MATLAB code file, an Export dialog box
opens. Select the save location and type a file name, and then click Save.

Note You can also save configuration information to an Image Acquisition
Tool (IAT) file that can then be loaded in the tool in a future session. See
“Saving Image Acquisition Tool Configurations” on page 3-42.

3-45

3 Using the Image Acquisition Tool GUI

Saving and Copying Image Acquisition Tool Session Log

In this section...

“About the Session Log” on page 3-46

“Saving the Session Log” on page 3-46

“Copying the Session Log” on page 3-47

About the Session Log
The session log dynamically records every action you perform in the Image
Acquisition Tool. The corresponding command-line functionality for actions
on a videoinput object or videosource object is reflected in the log. The title
displays the name of the device, as shown in the Hardware Browser.

You cannot directly edit in the Session Log pane. You can save the contents
to a MATLAB code file or copy it to another destination, and then edit the
contents.

Each device format has its own session log, independent of any other formats.
If you switch to a different device or format, the contents of the session log
will reflect the currently selected device. If you switch back to a previous node
in the Hardware Browser, the session log for that device will remain in the
same state it was in before you switched nodes.

Saving the Session Log
To save the contents to a MATLAB code file:

1 Click the Save the current session log to a file button in the Session
Log toolbar. You can also right-click in the log pane and select Save.

3-46

Saving and Copying Image Acquisition Tool Session Log

2 In the Save Session Log dialog box, browse to the location where you want
to save the file.

3 Use the default name, imaqtoolSessionLog.m, or rename it.

4 When you click the Save button, the file will open in the MATLAB Editor.
You can then either edit it or close it.

Note that the entire contents of the session log is saved. If you just want to
save a portion of the log, use the Copy command instead.

Copying the Session Log
To copy all or part of the contents to the clipboard:

1 Select the portion of the log that you want to copy.

3-47

3 Using the Image Acquisition Tool GUI

The Copy command is then enabled.

2 Click the Copy button in the Session Log toolbar. You can also right-click
in the log pane and select Copy.

This copies the selected contents to the system clipboard.

3 Go to the application or file that you wish to copy it into, and right-click
Paste.

You can then edit or save it as your application allows.

3-48

Registering a Third-Party Adaptor in the Image Acquisition Tool

Registering a Third-Party Adaptor in the Image Acquisition
Tool

If you are using a third-party adaptor that requires the use of the
imaqregister function, you can use this menu as an easier way to add the
adaptor. Note that this function is not documented in the Image Acquisition
Toolbox User’s Guide, but is documented in the Image Acquisition Toolbox
Adaptor Kit User’s Guide.

To register an adaptor:

1 Click Tools > Register a Third-Party Adaptor on the Image Acquisition
Tool menu.

2 In the Register a 3rd Party Adaptor dialog box, browse to the .dll file
that represents your adaptor.

3 Select the file and click OK to register the adaptor.

3-49

3 Using the Image Acquisition Tool GUI

3-50

4

Connecting to Hardware

To connect to an image acquisition device from within MATLAB, you must
create a video input object. This object represents the connection between
MATLAB and the device. You can use object properties to control various
aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

• “Getting Hardware Information” on page 4-2

• “Creating Image Acquisition Objects” on page 4-9

• “Configuring Image Acquisition Object Properties” on page 4-17

• “Starting and Stopping a Video Input Object” on page 4-24

• “Deleting Image Acquisition Objects” on page 4-28

• “Saving Image Acquisition Objects” on page 4-30

• “Image Acquisition Toolbox Properties” on page 4-31

4 Connecting to Hardware

Getting Hardware Information

In this section...

“Getting Hardware Information” on page 4-2

“Determining the Device Adaptor Name” on page 4-3

“Determining the Device ID” on page 4-3

“Determining Supported Video Formats” on page 4-6

Getting Hardware Information
To connect to an image acquisition device from within MATLAB, you must
create a video input object. This object represents the connection between
MATLAB and the device. You can use object properties to control various
aspects of the acquisition. Before you can create the object, you need several
pieces of information about the device that you want to connect to.

To access an image acquisition device, the toolbox needs several pieces of
information:

• The name of the adaptor the toolbox uses to connect to the image
acquisition device

• The device ID of the device you want to access

• The video format of the video stream or, optionally, a device configuration
file (camera file)

You use the imaqhwinfo function to retrieve this information, as described
in the following subsections.

Note When using imaqhwinfo to get information about a device, especially
devices that use a Video for Windows (VFW) driver, you might encounter
dialog boxes reporting an assertion error. Make sure that the software drivers
are installed correctly and that the acquisition device is connected to the
computer.

4-2

Getting Hardware Information

Determining the Device Adaptor Name
An adaptor is the software the toolbox uses to communicate with an image
acquisition device via its device driver. The toolbox includes adaptors for some
vendors of image acquisition equipment and for particular classes of image
acquisition devices. For the latest information about supported hardware,
visit the Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

To determine which adaptors are available on your system, call the
imaqhwinfo function. The imaqhwinfo function returns information about
the toolbox software and lists the adaptors available on the system in the
InstalledAdaptors field. In this example, there are two adaptors available
on the system.

imaqhwinfo
ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

Note While every adaptor supported by the Image Acquisition Toolbox
software is installed with the toolbox, imaqhwinfo lists only adaptors in
the InstalledAdaptors field that are loadable. That is, the device drivers
required by the vendor are installed on the system. Note, however, that
inclusion in the InstalledAdaptors field does not necessarily mean that
an adaptor is connected to a device.

Determining the Device ID
The adaptor assigns a unique number to each device with which it can
communicate. The adaptor assigns the first device it detects the device ID
1, the second it detects the device ID 2, and so on.

To find the device ID of a particular image acquisition device, call the
imaqhwinfo function, specifying the name of the adaptor as the only
argument. When called with this syntax, imaqhwinfo returns a structure

4-3

http://www.mathworks.com/products/imaq

4 Connecting to Hardware

containing information about all the devices available through the specified
adaptor.

In this example, the imaqhwinfo function returns information about all the
devices available through the Matrox® adaptor.

info = imaqhwinfo('matrox');
info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'matrox'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

The fields in the structure returned by imaqhwinfo provide the following
information.

Field Description

AdaptorDllName Text string that identifies the name of the adaptor
dynamic link library (DLL)

AdaptorDllVersion Information about the version of the adaptor DLL

AdaptorName Name of the adaptor

DeviceIDs Cell array containing the device IDs of all the
devices accessible through this adaptor

DeviceInfo Array of device information structures. See
“Getting More Information About a Particular
Device” on page 4-4 for more information.

Getting More Information About a Particular Device
If an adaptor provides access to multiple devices, you might need to find out
more information about the devices before you can select a device ID. The
DeviceInfo field is an array of device information structures. Each device
information structure contains detailed information about a particular device
available through the adaptor.

4-4

Getting Hardware Information

To view the information for a particular device, you can use the device ID as a
reference into the DeviceInfo structure array. Call imaqhwinfo again, this
time specifying a device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1

DeviceName: 'Orion'
DeviceID: 1

VideoInputConstructor: 'videoinput('matrox', 1)'
VideoDeviceConstructor: 'imaq.VideoDevice('matrox', 1)'

SupportedFormats: {1x10 cell}

The fields in the device information structure provide the following
information about a device.

Field Description

DefaultFormat Text string that identifies the video format
used by the device if none is specified at object
creation time

DeviceFileSupported If set to 1, the device supports device
configuration files; otherwise 0. See “Using
Device Configuration Files (Camera Files)” on
page 4-14 for more information.

DeviceName Descriptive text string, assigned by the adaptor,
that identifies the device

DeviceID ID assigned to the device by the adaptor

VideoInputConstructor Default syntax you can use to create a video
input object to represent this device. See
“Creating Image Acquisition Objects” on page
4-9 for more information.

4-5

4 Connecting to Hardware

Field Description

VideoDeviceConstructor Default syntax you can use to create a
VideoDevice System object to represent this
device.

SupportedFormats Cell array of strings that identify the video
formats supported by the device. See
“Determining Supported Video Formats” on
page 4-6 for more information.

Determining Supported Video Formats
The video format specifies the characteristics of the images in the video
stream, such as the image resolution (width and height), the industry
standard used, and the size of the data type used to store pixel information.

Image acquisition devices typically support multiple video formats. You can
specify the video format when you create the video input object to represent
the connection to the device. See “Creating Image Acquisition Objects” on
page 4-9 for more information.

Note Specifying the video format is optional; the toolbox uses one of the
supported formats as the default.

To determine which video formats an image acquisition device supports, look
in the SupportedFormats field of the DeviceInfo structure returned by the
imaqhwinfo function. To view the information for a particular device, call
imaqhwinfo, specifying the device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
DeviceFileSupported: 1

DeviceName: 'Orion'
DeviceID: 1

VideoInputConstructor: 'videoinput('matrox', 1)'

4-6

Getting Hardware Information

VideoDeviceConstructor: 'imaq.VideoDevice('matrox', 1)'
SupportedFormats: {1x10 cell}

The DefaultFormat field lists the default format selected by the toolbox. The
SupportedFormats field is a cell array containing text strings that identify
all the supported video formats. The toolbox assigns names to the formats
based on vendor-specific terminology. If you want to specify a video format
when you create an image acquisition object, you must use one of the text
strings in this cell array. See “Creating Image Acquisition Objects” on page
4-9 for more information.

celldisp(dev_info.SupportedFormats)

ans{1} =

M_RS170

ans{2} =

M_RS170_VIA_RGB

ans{3} =

M_CCIR

ans{4} =

M_CCIR_VIA_RGB

ans{5} =

M_NTSC

ans{6} =

M_NTSC_RGB

ans{7} =

M_NTSC_YC

4-7

4 Connecting to Hardware

ans{8} =

M_PAL

ans{9} =

M_PAL_RGB

ans{10} =

M_PAL_YC

4-8

Creating Image Acquisition Objects

Creating Image Acquisition Objects

In this section...

“Types of Objects” on page 4-9

“Video Input Objects” on page 4-9

“Video Source Objects” on page 4-9

“Creating a Video Input Object” on page 4-10

“Specifying the Video Format” on page 4-12

“Specifying the Selected Video Source Object” on page 4-15

“Getting Information About a Video Input Object” on page 4-16

Types of Objects
After you get information about your image acquisition hardware, described in
“Getting Hardware Information” on page 4-2, you can establish a connection
to the device by creating an image acquisition object. The toolbox uses two
types of image acquisition objects:

• Video input object

• Video source object

Video Input Objects
A video input object represents the connection between MATLAB and a video
acquisition device at a high level. You must create the video input object
using the videoinput function. See “Creating a Video Input Object” on page
4-10 for more information.

Video Source Objects
When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify.

4-9

4 Connecting to Hardware

At any one time, only one of the video source objects, called the selected
source, can be active. This is the source used for acquisition. The toolbox
selects one of the video source objects by default, but you can change this
selection. See “Specifying the Selected Video Source Object” on page 4-15
for more information.

The following figure illustrates how a video input object acts as a container
for one or more video source objects.

Relationship of Video Input Objects and Video Source Objects

For example, a Matrox frame grabber device can support eight physical
connections, which Matrox calls channels. These channels can be configured in
various ways, depending upon the video format. If you specify a monochrome
video format, such as RS170, the toolbox creates eight video source objects,
one object for each of the eight channels on the device. If you specify a color
video format, such as NTSC RGB, the Matrox device uses three physical
channels to represent one RGB connection, where each physical connection
provides the red data, green data, and blue data separately. With this format,
the toolbox only creates two video source objects for the same device.

Creating a Video Input Object
To create a video input object, call the videoinput function specifying the
adaptor name, device ID, and video format. You retrieved this information
using the imaqhwinfo function (described in “Getting Hardware Information”
on page 4-2). The only required argument is the adaptor name. The toolbox
can use default values for the device ID and video format.

This example creates a video input object to represent the connection to a
Matrox image acquisition device. The imaqhwinfo function includes the

4-10

Creating Image Acquisition Objects

default videoinput syntax in the VideoInputConstructor field of the device
information structure.

vid = videoinput('matrox');

This syntax uses the default video format listed in the DefaultFormat field of
the data returned by imaqhwinfo. You can optionally specify the video format.
See “Specifying the Video Format” on page 4-12 for more information.

Viewing a Summary of a Video Input Object
To view a summary of the characteristics of the video input object you created,
enter the variable name you assigned to the object at the command prompt.
For example, this is the summary for the object vid.

vid

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the summary includes the name of the image acquisition
device this object represents. In the example, this is a Matrox Orion frame
grabber.

2 The Acquisition Source section lists the name of all the video source
objects associated with this video input object. For many objects, this list
might only contain one video source object. In the example, the Matrox

4-11

4 Connecting to Hardware

device supports eight physical input channels and, with the default video
format, the toolbox creates a video source object for each connection. For
an example showing the video source objects created with another video
format, see “Specifying the Video Format” on page 4-12.

3 The Acquisition Parameters section lists the values of key video input object
properties. These properties control various aspects of the acquisition,
such as the number of frames to acquire and the location where acquired
frames are stored. For information about these properties, see “Acquiring
Image Data” on page 5-2.

4 The Trigger Parameters section lists the trigger type configured for the
object and the number of times the trigger is to be executed. Trigger
execution initiates data logging, and the toolbox supports several types of
triggers. The example object is configured by default with an immediate
trigger. For more information about configuring triggers, see “Specifying
the Trigger Type” on page 5-9.

5 The Status section lists the current state of the object. A video input object
can be in one of several states:

• Running or not running (stopped)

• Logging or not logging

• Previewing or not previewing

In the example, the object describes its state as Waiting for START. This
indicates it is not running. For more information about the running state,
see “Starting and Stopping a Video Input Object” on page 4-24. This section
also reports how many frames of data have been acquired and how many
frames are available in the buffer where the toolbox stores acquired frames.
For more information about these parameters, see “Controlling Logging
Parameters” on page 5-26.

Specifying the Video Format
You can optionally specify the format of the video stream when you create
a video input object as a third argument to the videoinput function. This
argument can take two forms:

• A text string specifying a video format

4-12

Creating Image Acquisition Objects

• A name of a device configuration file, also known as a camera file

The following sections describe these options. If you do not specify a video
format, the videoinput function uses one of the video formats supported by
the device. For Matrox and Data Translation® devices, it chooses the RS170
video format. For Windows devices, it uses the first RGB format in the list of
supported formats or, if no RGB formats are supported, the device’s default
format.

Using a Video Format String
To specify a video format as a text string, use the imaqhwinfo function to
determine the list of supported formats. The imaqhwinfo function returns
this information in the SupportedFormats field of the device information
structure. See “Determining Supported Video Formats” on page 4-6 for more
information.

In this example, each of the text strings is a video format supported by a
Matrox device.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

For Matrox devices, the toolbox uses the RS170 format as the default. (To find
out which is the default video format, look in the DefaultFormat field of the
device information structure returned by the imaqhwinfo function.)

4-13

4 Connecting to Hardware

Note For Matrox devices, the M_NTSC_RGB format string represents a
component video format.

This example creates a video input object, specifying a color video format.

vid2 = videoinput('matrox', 1,'M_NTSC_RGB');

Using Device Configuration Files (Camera Files)
For some devices, you can use a device configuration file, also known as a
camera file, to specify the video format as well as other configuration settings.
Image acquisition device vendors supply these device configuration files.

Note The toolbox ignores hardware trigger configurations included in a
device configuration file. To configure a hardware trigger, you must use the
toolbox triggerconfig function. See “Using a Hardware Trigger” on page
5-15 for more information.

For example, with Matrox frame grabbers, you can download digitizer
configuration format (DCF) files, in their terminology. These files configure
their devices to support particular cameras.

Some image acquisition device vendors provide utility programs you can use
to create a device configuration file or edit an existing one. See your hardware
vendor’s documentation for more information.

To determine if your image acquisition device supports device configuration
files, check the value of the DeviceFileSupported field of the device
information structure returned by imaqhwinfo. See “Getting More
Information About a Particular Device” on page 4-4 for more information.

When you use a device configuration file, the value of the VideoFormat
property of the video input object is the name of the file, not a video format
string.

4-14

Creating Image Acquisition Objects

This example creates a video input object specifying a Matrox device
configuration file as an argument.

Specifying the Selected Video Source Object
When you create a video input object, the toolbox creates one or more video
source objects associated with the video input object. The number of video
source objects created depends on the device and the video format. The
Source property of the video input object lists these video source objects.

To illustrate, this example lists the video source objects associated with the
video input object vid.

get(vid,'Source')
Display Summary for Video Source Object Array:

Index: SourceName: Selected:
1 'CH0' 'on'
2 'CH1' 'off'
3 'CH2' 'off'
4 'CH3' 'off'
5 'CH4' 'off'
6 'CH5' 'off'
7 'CH6' 'off'
8 'CH7' 'off'

4-15

4 Connecting to Hardware

By default, the video input object makes the first video source object in the
array the selected source. To use another video source, change the value of
the SelectedSourceName property.

This example changes the currently selected video source object from CH0 to
CH1 by setting the value of the SelectedSourceName property.

vid.SelectedSourceName = 'CH1';

Note The getselectedsource function returns the video source object that is
currently selected at the time the function is called. If you change the value
of the SelectedSourceName property, you must call the getselectedsource
function again to retrieve the new selected video source object.

Getting Information About a Video Input Object
After creating a video input object, you can get information about the device
it represents using the imaqhwinfo function. When called with a video
input object as an argument, imaqhwinfo returns a structure containing
information about the object such as the name of the adaptor, name of the
device, video resolution, and details of the vendor’s device driver and version.

out = imaqhwinfo(vid)
out =

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96
MaxWidth: 128

NativeDataType: 'uint8'
TotalSources: 1

VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

4-16

Configuring Image Acquisition Object Properties

Configuring Image Acquisition Object Properties

In this section...

“About Image Acquisition Object Properties” on page 4-17

“Viewing the Values of Object Properties” on page 4-18

“Viewing the Value of a Particular Property” on page 4-20

“Getting Information About Object Properties” on page 4-21

“Setting the Value of an Object Property” on page 4-21

About Image Acquisition Object Properties
The video input object and the video source object both support properties that
enable you to control characteristics of the video image and how it is acquired.

The video input object properties control aspects of an acquisition that are
common to all image acquisition devices. For example, you can use the
FramesPerTrigger property to specify the amount of data you want to acquire.

The video source object properties control aspects of the acquisition associated
with a particular source. The set of properties supported by a video source
object varies with each device. For example, some image acquisition devices
support properties that enable you to control the quality of the image being
produced, such as Brightness, Hue, and Saturation.

With either type of object, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current
values

• View the value of a particular property

• Get information about a property

• Set the value of a property

4-17

4 Connecting to Hardware

Note Three video input object trigger properties require the use of a special
configuration function. For more information, see “Setting Trigger Properties”
on page 4-23.

Viewing the Values of Object Properties
To view all the properties of an image acquisition object, with their current
values, use the get function. You can also use the inspect function to view
a list of object properties in the Property Inspector window, where you can
also edit their values.

This example uses the get function to display a list of all the properties of the
video input object vid. “Viewing the Properties of a Video Source Object” on
page 4-19 describes how to do this for video source objects.

If you do not specify a return value, the get function displays the object
properties in four categories: General Settings, Callback Function Settings,
Trigger Settings, and Acquisition Sources.

get(vid)
General Settings:

DeviceID = 1
DiskLogger = []
DiskLoggerFrameCount = 0
EventLog = [1x0 struct]
FrameGrabInterval = 1
FramesAcquired = 0
FramesAvailable = 0
FramesPerTrigger = 10
Logging = off
LoggingMode = memory
Name = M_RS170-matrox-1
NumberOfBands = 1
Previewing = off
ReturnedColorSpace = grayscale
ROIPosition = [0 0 640 480]
Running = off
Tag =
Timeout = 10

4-18

Configuring Image Acquisition Object Properties

Type = videoinput
UserData = []
VideoFormat = M_RS170
VideoResolution = [640 480]

Callback Function Settings:
ErrorFcn = @imaqcallback
FramesAcquiredFcn = []
FramesAcquiredFcnCount = 0
StartFcn = []
StopFcn = []
TimerFcn = []
TimerPeriod = 1
TriggerFcn = []

Trigger Settings:
InitialTriggerTime = [0 0 0 0 0 0]
TriggerCondition = none
TriggerFrameDelay = 0
TriggerRepeat = 0
TriggersExecuted = 0
TriggerSource = none
TriggerType = immediate

Acquisition Sources:
SelectedSourceName = CH0
Source = [1x8 videosource]

Viewing the Properties of a Video Source Object
To view the properties supported by the video source object (or objects)
associated with a video input object, use the getselectedsource function to
retrieve the currently selected video source object. This example lists the
properties supported by the video source object associated with the video
input object vid. Note the device-specific properties that are included.

4-19

4 Connecting to Hardware

Note The video source object for your device might not include device-specific
properties. For example, devices accessed with the 'winvideo' adaptor, such
as webcams, that use a Video for Windows (VFW) driver, may not provide a
way for the toolbox to programmatically query for device properties. Use the
configuration tools provided by the manufacturer to configure these devices.

get(getselectedsource(vid))
General Settings:

Parent = [1x1 videoinput]
Selected = on
SourceName = CH0
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass
UserOutputBit3 = off
UserOutputBit4 = off
XScaleFactor = 1
YScaleFactor = 1

Viewing the Value of a Particular Property
To view the value of a particular property of an image acquisition object, use
the get function, specifying the name of the property as an argument. You
can also access the value of the property as you would a field in a MATLAB
structure.

This example uses the get function to retrieve the value of the Previewing
property.

get(vid,'Previewing')

ans =

off

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

4-20

Configuring Image Acquisition Object Properties

vid.Previewing

ans =

off

Getting Information About Object Properties
To get information about a particular property, see “Image Acquisition Toolbox
Properties” on page 4-31. You can also get information about a particular
property at the command line by using the propinfo or imaqhelp functions.

The propinfo function returns a structure that contains information about
the property such as its data type, default value, and a list of all possible
values, if the property supports such a list. This example uses propinfo to
get information about the LoggingMode property.

propinfo(vid,'LoggingMode')

ans =

Type: 'string'
Constraint: 'enum'

ConstraintValue: {'memory' 'disk' 'disk&memory'}
DefaultValue: 'memory'

ReadOnly: 'whileRunning'
DeviceSpecific: 0

The imaqhelp function returns reference information about the property with
a complete description. This example uses imaqhelp to get information about
the LoggingMode property.

imaqhelp(vid,'LoggingMode')

Setting the Value of an Object Property
To set the value of a particular property of an image acquisition object, use
the set function, specifying the name of the property as an argument. You
can also assign the value to the property as you would a field in a MATLAB
structure.

4-21

4 Connecting to Hardware

Note Because some properties are read only, only a subset of all video input
and video source properties can be set.

This example uses the set function to set the value of the LoggingMode
property.

set(vid,'LoggingMode','disk&memory')

To verify the new value of the property, use the get function.

get(vid,'LoggingMode')

ans =

disk&memory

This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

vid.LoggingMode = 'disk';
vid.LoggingMode

ans =

disk

Viewing a List of All Settable Object Properties
To view a list of all the properties of a video input object or video source object
that can be set, use the set function.

set(vid)

4-22

Configuring Image Acquisition Object Properties

Setting Trigger Properties
The values of certain trigger properties, TriggerType, TriggerCondition,
and TriggerSource, are interrelated. For example, some TriggerCondition
values are only valid with specific values of the TriggerType property.

To ensure that you specify only valid combinations for the values of these
properties, you must use two functions:

• The triggerinfo function returns all the valid combinations of values
for the specified video input object.

• The triggerconfig function sets the values of these properties.

For more information, see “Specifying Trigger Type, Source, and Condition”
on page 5-6.

4-23

4 Connecting to Hardware

Starting and Stopping a Video Input Object
When you create a video input object, you establish a connection between
MATLAB and an image acquisition device. However, before you can acquire
data from the device, you must start the object, using the start function.

start(vid);

When you start an object, you reserve the device for your exclusive use and
lock the configuration. Thus, certain properties become read only while
running.

An image acquisition object stops running when any of the following
conditions is met:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object. For information about these properties,
see “Acquiring Image Data” on page 5-2.

• A run-time error occurs.

• The object’s Timeout value is reached.

• You issue the stop function.

When an object is started, the toolbox sets the object’s Running property to
'on'. When an object is not running, the toolbox sets the object’s Running
property to 'off'; this state is called stopped.

4-24

Starting and Stopping a Video Input Object

The following figure illustrates how an object moves from a running to a
stopped state.

Transitions from Running to Stopped States

The following example illustrates starting and stopping an object:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

2 Verify that the image is in a stopped state — Use the isrunning
function to determine the current state of the video input object.

isrunning(vid)

ans =

0

3 Configure properties To illustrate object states, set the video input
object’s TriggerType property to 'Manual'. To set the value of certain
trigger properties, including the TriggerType property, you must use the
triggerconfig function. See “Setting the Values of Trigger Properties”
on page 5-6 for more information.

triggerconfig(vid, 'Manual')

4-25

4 Connecting to Hardware

Configure an acquisition that takes several seconds so that you can see the
video input in logging state.

vid.FramesPerTrigger = 100;

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

5 Verify that the image is running but not logging—Use the isrunning
and islogging functions to determine the current state of the video input
object. With manual triggers, the video input object is in running state
after being started but does not start logging data until a trigger executes.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

6 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

While the acquisition is underway, check the logging state of the video
input object.

islogging(vid)

ans =

1

4-26

Starting and Stopping a Video Input Object

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

0

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

4-27

4 Connecting to Hardware

Deleting Image Acquisition Objects
When you finish using your image acquisition objects, use the delete function
to remove them from memory. After deleting them, clear the variables
that reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete a video input object, all the video source objects
associated with the video input object are also deleted.

To illustrate, this example creates several video input objects and then
deletes them.

1 Create several image acquisition objects — This example creates
several video input objects for a single webcam image acquisition device,
specifying several different video formats. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);
vid2 = videoinput('winvideo',1,'RGB24_176x144');
vid3 = videoinput('winvideo',1,'YV12_352x288');

2 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

You can delete image acquisition objects one at a time, using the delete
function.

delete(vid)

4-28

Deleting Image Acquisition Objects

You can also delete all the video input objects that currently exist in
memory in one call to delete by using the imaqfind function. The
imaqfind function returns an array of all the video input objects in memory.

imaqfind

Video Input Object Array:

Index: Type: Name:
1 videoinput RGB555_128x96-winvideo-1
2 videoinput RGB24_176x144-winvideo-1
3 videoinput YV12_352x288-winvideo-1

Nest a call to the imaqfind function within the delete function to delete
all these objects from memory.

delete(imaqfind)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes Class

vid 1x1 1120 videoinput object
vid2 1x1 1120 videoinput object
vid3 1x1 1120 videoinput object
vids 1x3 1280 videoinput object

These variables are not valid image acquisition objects.

isvalid(vid)

ans =
0

To remove these variables from the workspace, use the clear command.

4-29

4 Connecting to Hardware

Saving Image Acquisition Objects

In this section...

“Using the save Command” on page 4-30

“Using the obj2mfile Command” on page 4-30

Using the save Command
You can save a video input object to a MAT-file just as you would any
workspace variable by using the save command. This example saves the
video input object vid to the MAT-file myvid.mat.

save myvid vid

When you save a video input object, all the video source objects associated
with the video input object are also saved.

To load an image acquisition object that was saved to a MAT-file into the
MATLAB workspace, use the load command. For example, to load vid from
MAT-file myvid.mat, use

load myvid

Note The values of read-only properties are not saved. When you load an
image acquisition object into the MATLAB workspace, read-only properties
revert to their default values. To determine if a property is read only, use the
propinfo function or read the property reference page.

Using the obj2mfile Command
Another way to save a video input object is to create an M-file that contains
the set of commands used to create the video input object and configure its
properties. You can use the obj2mfile function to create such an M-file.
When you execute the M-file, it can create a new video input object or reuses
an existing video input object, if one exists that has the same video format
and adaptor.

4-30

Image Acquisition Toolbox Properties

Image Acquisition Toolbox Properties
The following properties are available in the toolbox.

• BayerSensorAlignment

• DeviceID

• DiskLogger

• DiskLoggerFrameCount

• ErrorFcn

• EventLog

• FrameGrabInterval

• FramesAcquired

• FramesAcquiredFcn

• FramesAcquiredFcnCount

• FramesAvailable

• FramesPerTrigger

• InitialTriggerTime

• Logging

• LoggingMode

• Name

• NumberOfBands

• Parent

• Previewing

• ReturnedColorSpace

• ROIPosition

• Running

• Selected

• SelectedSourceName

4-31

4 Connecting to Hardware

• Source

• SourceName

• StartFcn

• StopFcn

• Tag

• Timeout

• TimerFcn

• TimerPeriod

• TriggerCondition

• TriggerFcn

• TriggerFrameDelay

• TriggerRepeat

• TriggersExecuted

• TriggerSource

• TriggerType

• Type

• UserData

• VideoFormat

• VideoResolution

4-32

5

Acquiring Image Data

5 Acquiring Image Data

Acquiring Image Data
The core of any image acquisition application is the data acquired from the
input device. A trigger is the event that initiates the acquisition of image
frames, a process called logging. A trigger event occurs when a certain
condition is met. For some types of triggers, the condition can be the execution
of a toolbox function. For other types of triggers, the condition can be a signal
from an external source that is monitored by the image acquisition hardware.

The following topics describe how to configure and use the various triggering
options supported by the Image Acquisition Toolbox software and control
other acquisition parameters.

• “Data Logging” on page 5-3

• “Setting the Values of Trigger Properties” on page 5-6

• “Specifying the Trigger Type” on page 5-9

• “Controlling Logging Parameters” on page 5-26

• “Waiting for an Acquisition to Finish” on page 5-37

• “Managing Memory Usage” on page 5-41

• “Logging Image Data to Disk” on page 5-46

5-2

Data Logging

Data Logging

In this section...

“Overview” on page 5-3

“Trigger Properties” on page 5-4

Overview
When a trigger occurs, the toolbox sets the object’s Logging property to 'on'
and starts storing the acquired frames in a buffer in memory, a disk file,
or both. When the acquisition stops, the toolbox sets the object’s Logging
property to 'off'.

The following figure illustrates when an object moves into a logging state and
the relation between running and logging states.

Logging State Transitions

Note After Logging is set to 'off', it is possible that the object might still
be logging data to disk. To determine when disk logging is complete, check
the value of the DiskLoggerFrameCount property. For more information, see
“Logging Image Data to Disk” on page 5-46.

5-3

5 Acquiring Image Data

The following figure illustrates a group of frames being acquired from the
video stream and being logged to memory and disk.

Overview of Data Logging

Trigger Properties
The video input object supports several properties that you can use to
configure aspects of trigger execution. Some of these properties return
information about triggers. For example, to find out when the first trigger
occurred, look at the value of the InitialTriggerTime property. Other
properties enable you to control trigger behavior. For example, you use the
TriggerRepeat property to specify how many additional times an object
should execute a trigger.

The following table provides a brief description of all the trigger-related
properties supported by the video input object. For information about how to
set these properties, see “Setting the Values of Trigger Properties” on page 5-6.

5-4

Data Logging

Property Description

InitialTriggerTime Reports the absolute time when the first trigger
executed.

TriggerCondition Specifies the condition that must be met for
a trigger to be executed. This property is
always set to 'none' for immediate and manual
triggers.

TriggerFcn Specifies the callback function to execute when
a trigger occurs. For more information about
callbacks, see “Using Events and Callbacks” on
page 7-2.

TriggerFrameDelay Specifies the number of frames to skip before
logging data to memory, disk, or both. For more
information, see “Delaying Data Logging After a
Trigger” on page 5-34.

TriggerRepeat Specifies the number of additional times to
execute a trigger. If the value of TriggerRepeat
is 0 (zero), the trigger executes but is not
repeated any additional times. For more
information, see “Specifying Multiple Triggers”
on page 5-35.

TriggersExecuted Reports the number of triggers that have been
executed.

TriggerSource Specifies the source to monitor for a trigger
condition to be met. This property is always set
to 'none' for immediate and manual triggers.

TriggerType Specifies the type of trigger: 'immediate',
'manual', or 'hardware'. Use the triggerinfo
function to determine whether your image
acquisition device supports hardware triggers.

5-5

5 Acquiring Image Data

Setting the Values of Trigger Properties

In this section...

“About Trigger Properties” on page 5-6

“Specifying Trigger Type, Source, and Condition” on page 5-6

About Trigger Properties
Most trigger properties can be set using the same methods you use to set any
other image acquisition object property: using the set function or referencing
the property as you would a field in a structure. For example, you can use the
set function to specify the value of the TriggerRepeat property, where vid is
a video input object created using the videoinput function.

set(vid,'TriggerRepeat',Inf)

For more information, see “Configuring Image Acquisition Object Properties”
on page 4-17.

Some trigger properties, however, are interrelated and require the use of
the triggerconfig function to set their values. These properties are the
TriggerType, TriggerCondition, and TriggerSource properties. For
example, some TriggerCondition values are only valid when the value of the
TriggerType property is 'hardware'.

Specifying Trigger Type, Source, and Condition
Setting the values of the TriggerType, TriggerSource, and
TriggerCondition properties can be a two-step process:

1 Determine valid configurations of these properties by calling the
triggerinfo function.

2 Set the values of these properties by calling the triggerconfig function.

For an example of using these functions, see “Using a Hardware Trigger”
on page 5-15.

5-6

Setting the Values of Trigger Properties

Determining Valid Configurations
To find all the valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties, use the triggerinfo function, specifying a
video input object as an argument.

config = triggerinfo(vid);

This function returns an array of structures, one structure for each valid
combination of property values. Each structure in the array is made up of
three fields that contain the values of each of these trigger properties. For
example, the structure returned for an immediate trigger always has these
values:

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

A device that supports hardware configurations might return the following
structure.

TriggerType: 'hardware'
TriggerCondition: 'risingEdge'

TriggerSource: 'TTL'

Note The text strings used as the values of the TriggerCondition and
TriggerSource properties are device specific. Your device, if it supports
hardware triggers, might support different condition and source values.

Configuring Trigger Type, Source, and Condition Properties
To set the values of the TriggerType, TriggerSource, and TriggerCondition
properties, you must use the triggerconfig function. You specify the value
of the property as an argument to the function.

For example, this code sets the values of these properties for a hardware
trigger.

triggerconfig(vid,'hardware','risingEdge','TTL')

5-7

5 Acquiring Image Data

If you are specifying a manual trigger, you only need to specify the trigger
type value as an argument.

triggerconfig(vid,'manual')

You can also pass one of the structures returned by the triggerinfo function
to the triggerconfig function and set all three properties at once.

triggerconfig(vid, config(1))

See the triggerconfig function documentation for more information.

5-8

Specifying the Trigger Type

Specifying the Trigger Type

In this section...

“Comparison of Trigger Types” on page 5-9

“Using an Immediate Trigger” on page 5-10

“Using a Manual Trigger” on page 5-13

“Using a Hardware Trigger” on page 5-15

“Setting DCAM-Specific Trigger Modes” on page 5-19

Comparison of Trigger Types
To specify the type of trigger you want to execute, set the value of
the TriggerType property of the video input object. You must use the
triggerconfig function to set the value of this property. The following table
lists all the trigger types supported by the toolbox, with information about
when to use each type of trigger.

Comparison of Trigger Types

TriggerType
Value

TriggerSource
and
TriggerCondition
Values Description

'immediate' Always 'none' The trigger occurs automatically,
immediately after the start function
is issued. This is the default trigger
type. For more information, see
“Using an Immediate Trigger” on
page 5-10.

'manual' Always 'none' The trigger occurs when you issue
the trigger function. A manual
trigger can provide more control over
image acquisition. For example,
you can monitor the video stream
being acquired, using the preview
function, and manually execute the

5-9

5 Acquiring Image Data

Comparison of Trigger Types (Continued)

TriggerType
Value

TriggerSource
and
TriggerCondition
Values Description

trigger when you observe a particular
condition in the scene. For more
information, see “Using a Manual
Trigger” on page 5-13.

'hardware' Device-specific Hardware triggers are external
signals that are processed directly by
the hardware. This type of trigger
is used when synchronization with
another device is part of the image
acquisition setup or when speed is
required. A hardware device can
process an input signal much faster
than software. For more information,
see “Using a Hardware Trigger” on
page 5-15.

Note Only a subset of image
acquisition devices supports
hardware triggers. To determine
the trigger types supported by your
device, see “Determining Valid
Configurations” on page 5-7.

Using an Immediate Trigger
To use an immediate trigger, simply create a video input object. Immediate
triggering is the default trigger type for all video input objects. With an
immediate trigger, the object executes the trigger immediately after you start
the object running with the start command. The following figure illustrates
an immediate trigger.

5-10

Specifying the Trigger Type

Immediate Trigger

The following example illustrates how to use an immediate trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

2 Configure properties— To use an immediate trigger, you do not have to
configure the TriggerType property because 'immediate' is the default
trigger type. You can verify this by using the triggerconfig function
to view the current trigger configuration or by viewing the video input
object’s properties.

5-11

5 Acquiring Image Data

triggerconfig(vid)
ans =

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

This example sets the value of the FramesPerTrigger property to 5. (The
default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object. By default, the object executes an immediate
trigger and acquires five frames of data, logging the data to a memory
buffer. After logging the specified number of frames, the object stops
running.

start(vid)

To verify that the object acquired data, view the value of the
FramesAcquired property. The object updates the value of this property as
it acquires data.

vid.FramesAcquired
ans =

5

To execute another immediate trigger, you must restart the object. Note,
however, that this deletes the data acquired by the first trigger. To execute
multiple immediate triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-35 for more
information.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-12

Specifying the Trigger Type

Using a Manual Trigger
To use a manual trigger, create a video input object and set the value of the
TriggerType property to 'manual'. A video input object executes a manual
trigger after you issue the trigger function. The following figure illustrates a
manual trigger.

Manual Trigger

The following example illustrates how to use a manual trigger:

1 Create an image acquisition object — This example creates a video
input object for a webcam image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

2 Configure properties — Set the video input object’s TriggerType
property to 'Manual'. To set the values of certain trigger properties,

5-13

5 Acquiring Image Data

including the TriggerType property, you must use the triggerconfig
function. See “Setting the Values of Trigger Properties” on page 5-6 for
more information.

triggerconfig(vid, 'Manual')

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid);

The video object is now running but not logging. With manual triggers, the
video stream begins when the object starts but no frames are acquired
until the trigger executes.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

Verify that the object has still not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

4 Execute the manual trigger — Call the trigger function to execute
the manual trigger.

trigger(vid)

5-14

Specifying the Trigger Type

The object initiates the acquisition of five frames. Check the
FramesAcquired property again to verify that five frames have been
acquired.

get(vid,'FramesAcquired')
ans =
5

After it acquires the specified number of frames, the video input object
stops running.

isrunning(vid)

ans =

0

To execute another manual trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To
execute multiple manual triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 5-35 for more
information.

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Using a Hardware Trigger
To use a hardware trigger, create a video input object and set the value of the
TriggerType property to 'hardware'. You must also specify the source of the
hardware trigger and the condition type. The hardware monitors the source
you specify for the condition you specify. The following figure illustrates a
hardware trigger. For hardware triggers, the video stream does not start
until the trigger occurs.

5-15

5 Acquiring Image Data

Note Trigger sources and the conditions that control hardware triggers are
device specific. Use the triggerinfo function to determine whether your
image acquisition device supports hardware triggers and, if it does, which
conditions you can configure. Refer to the documentation that came with
your device for more detailed information about its hardware triggering
capabilities.

Hardware Trigger

The following example illustrates how to use a hardware trigger:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code. The device must support hardware triggers.

vid = videoinput('matrox',1);

2 Determine valid trigger property configurations — Use the
triggerinfo function to determine if your image acquisition device
supports hardware triggers, and if it does, to find out valid configurations of

5-16

Specifying the Trigger Type

the TriggerSource and TriggerCondition properties. See “Determining
Valid Configurations” on page 5-7 for more information.

In this example, triggerinfo returns the following valid trigger
configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
'immediate' 'none' 'none'
'manual' 'none' 'none'

'hardware' 'risingEdge' 'TTL'
'hardware' 'fallingEdge' 'TTL'

3 Configure properties — Configure the video input object trigger
properties to one of the valid combinations returned by triggerinfo. You
can specify each property value as an argument to the triggerconfig
function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object is running but not logging any data.

isrunning(vid)

5-17

5 Acquiring Image Data

ans =

1

islogging(vid)

ans =

0

The hardware begins monitoring the trigger source for the specified
condition. When the condition is met, the hardware executes a trigger
and begins providing image frames to the object. The object acquires the
number of frames specified by the FramesPerTrigger property. View the
value of the FramesAcquired property to see how much data was acquired.
The object updates the value of this property as it acquires data.

vid.FramesAcquired
ans =

5

After it executes the trigger and acquires the specified number of frames,
the video input object stops running.

isrunning(vid)

ans =

0

To execute another hardware trigger, you must first restart the video input
object. Note that this deletes the frames acquired by the first trigger. To
execute multiple triggers, specify a value for the TriggerRepeat property.
See “Specifying Multiple Triggers” on page 5-35 for more information.

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-18

Specifying the Trigger Type

Setting DCAM-Specific Trigger Modes
You can now use all trigger modes and all trigger inputs that DCAM cameras
support. Previous toolbox releases supported only trigger mode 0. Support for
additional trigger modes and inputs do not affect any existing code you use.

Control trigger functionality using the triggerinfo and triggerconfig
functions and the triggersource property. Before R2010a, one
triggersource was available, externalTrigger. Selecting externalTrigger
configures the camera to use trigger mode 0 with trigger source 0.

The triggersource property is now composed of the trigger type (internal or
external), the trigger source (0, 1, 2, etc.), and the mode number (0 through 5,
14 and 15). The following table summarizes the options.

Trigger
Mode

Parameter External
Source

Multiple Frames
Per Trigger

0 none yes yes

1 none yes no

2 (N >= 2) yes no

3 (N >= 1) no yes

4 (N >= 1) yes no

5 (N >= 1) yes no

14 unknown unknown unknown

15 unknown unknown unknown

For example, the second triggersource for trigger mode 1 is called
externalTrigger1-mode1. To use mode 3, the triggersource is
internalTrigger-mode3.

5-19

5 Acquiring Image Data

Note Toolbox versions before R2010a supported DCAM trigger mode 0
with the first available triggersource as externalTrigger. The existing
externalTrigger property will be maintained so to prevent backward
compatibility issues. In addition, in order to preserve symmetry with the
new functionality, triggersource externalTrigger0-mode0, which is
synonymous, will also be supported. The new trigger modes do not work
before R2010a.

Usage Notes

If a trigger mode has multiple trigger sources (modes 0, 1, 2, 4, and 5), then
triggersource has a digit indicating the corresponding camera source, even
if only one camera source is available. For example, if the camera has only
a single triggersource available, the toolbox reports the triggersource
name as externalTrigger0-modeX. If the trigger mode does not have
multiple sources (mode 3), then no source digit appears in the name (i.e,
internalTriggerMode3 instead of internalTriggerMode3-Source0).

The DCAM adaptor includes a TriggerParameter property that is passed to
the camera when you set trigger configurations. The TriggerParameter
property is validated when you call START after selecting a hardware trigger
mode.

If the selected trigger mode prohibits multiple frames per trigger, then an
error appears when you call START without setting FramesPerTrigger to 1.

If the camera supports only trigger mode 0 with source 0, then the original
functionality of having only the externalTrigger triggersource is
supported.

Trigger modes 14 and 15 are vendor-specific and are assumed to be external
triggers and have no restrictions on any settings. You must validate any
settings you use.

The following sections detail the trigger modes.

5-20

Specifying the Trigger Type

Trigger Mode 0
This is the only trigger mode supported before R2010a. When a trigger is
received, a frame is acquired. You can acquire multiple frames per trigger
by switching the camera for hardware triggered mode to free running mode
when a triggered frame is acquired.

No parameter is required.

The camera starts the integration of the incoming light from the external
trigger input falling edge.

5-21

5 Acquiring Image Data

Trigger Mode 1
In this mode, the duration of the trigger signal is used to control the
integration time of the incoming light. This mode is used to synchronize the
exposure time of the camera to an external event.

No parameter is required.

The camera starts the integration of the incoming light from the external
trigger input falling edge. Integration time is equal to the low state time of
the external trigger input if triggersource is fallingEdge, otherwise it is
equal to the high state time.

Trigger Mode 2
This mode is similar to mode 1, except the duration of the trigger signal does
govern integration time. Instead the number of trigger signals received does.
Integration commences upon the start of the first trigger signal and continues
until the start of the Nth trigger signal.

Parameter N is required and describes the number of trigger signals in an
integration.

5-22

Specifying the Trigger Type

The camera starts the integration of the incoming light from the first external
trigger input falling edge. At the Nth external trigger input falling edge,
integration stops. Parameter N is required and must be 2 or greater. (N >= 2).

Trigger Mode 3
Use this internal trigger mode to achieve a lower frame rate. When the
trigger generates internally, a frame is acquired and returned. A new frame
is not acquired for N x Tf when N is the parameter and Tf is the cycle time of
the fastest frame rate supported by the camera.

A parameter is required, as described above.

This is an internal trigger mode. The camera issues the trigger internally and
cycle time is N times of the cycle time of the fastest frame rate. Integration

5-23

5 Acquiring Image Data

time of incoming light is described in the shutter register. Parameter N is
required and must be 1 or greater (N >= 1).

Trigger Mode 4
This mode is the “multiple shutter preset mode.” It is similar to mode 1, but
the exposure time is governed by the shutter property. On each trigger,
shutter property defines the exposure duration. When N triggers are received,
a frame is acquired.

Parameter N is required and describes the number of triggers.

The camera starts integration of incoming light from the first external
trigger input falling edge and exposes incoming light at shutter time. Repeat
this sequence until the Nth external trigger input falling edge, then finish
integration. Parameter N is required and must be 1 or greater (N >= 1).

Trigger Mode 5
This mode is the “multiple shutter pulse width mode.” It is a combination of
modes 1 and 2. The exposure time is governed by the duration of the trigger
signal and a number of trigger signals can be integrated into a single readout.
If the trigger parameter is 1, this mode is degenerate with mode 1.

A parameter is required. The parameter describes the number of triggers.

5-24

Specifying the Trigger Type

The camera starts integration of incoming light from first the external trigger
input falling edge and exposes incoming light until the trigger is inactive.
Repeat this sequence until the Nth external trigger input falling edge, then
finish integration. Parameter N is required and must be 1 or greater (N >= 1).

Trigger Mode 14
This is a vendor-specific mode and no information is available. Consult the
documentation for your camera.

Trigger Mode 15
This is a vendor-specific mode and no information is available. Consult the
documentation for your camera.

5-25

5 Acquiring Image Data

Controlling Logging Parameters

In this section...

“Data Logging” on page 5-26

“Specifying Logging Mode” on page 5-26

“Specifying the Number of Frames to Log” on page 5-27

“Determining How Much Data Has Been Logged” on page 5-29

“Determining How Many Frames Are Available” on page 5-31

“Delaying Data Logging After a Trigger” on page 5-34

“Specifying Multiple Triggers” on page 5-35

Data Logging
The following subsections describe how to control various aspects of data
logging.

• Specifying the logging mode

• Specifying the number of frames to log

• Determining how many frames have been logged since the object was
started

• Determining how many frames are currently available in the memory
buffer

• Delaying data logging after a trigger executes

• Specifying multiple trigger executions

Specifying Logging Mode
Using the video input object LoggingMode property, you can control where the
toolbox logs acquired frames of data.

The default value for the LoggingMode property is 'memory'. In this mode,
the toolbox logs data to a buffer in memory. If you want to bring image data
into the MATLAB workspace, you must log frames to memory. The functions
provided by the toolbox to move data into the workspace all work with the

5-26

Controlling Logging Parameters

memory buffer. For more information, see “Bringing Image Data into the
MATLAB Workspace” on page 6-3.

You can also log data to a disk file by setting the LoggingMode property to
'disk' or to 'disk&memory'. By logging frames to a disk file, you create a
permanent record of the frames you acquire. For example, this code sets
the value of the LoggingMode property of the video input object vid to
'disk&memory'.

set(vid,'LoggingMode','disk&memory');

Because the toolbox stores the image frames in Audio Video Interleaved (AVI)
format, you can view the logged frames in any standard media player. For
more information, see “Logging Image Data to Disk” on page 5-46.

Specifying the Number of Frames to Log
In the Image Acquisition Toolbox software, you specify the amount of data
you want to acquire as the number of frames per trigger.

You specify the desired size of your acquisition as the value of the video input
object FramesPerTrigger property. By default, the value of this property is
10 frames per trigger, but you can specify any value. The following figure
illustrates an acquisition using the default value for the FramesPerTrigger
property. To see an example of an acquisition, see “Acquiring 100 Frames”
on page 5-29.

5-27

5 Acquiring Image Data

Specifying the Amount of Data to Log

Note While you can specify any size acquisition, the number of frames
you can acquire is limited by the amount of memory you have available on
your system for image storage. A large acquisition can potentially fill all
available system memory. For large acquisitions, you might want to remove
frames from the buffer as they are logged. For more information, see “Moving
Multiple Frames into the Workspace” on page 6-4. To learn how to empty the
memory buffer, see “Freeing Memory” on page 5-43.

Specifying a Noncontiguous Acquisition
Although FramesPerTrigger specifies the number of frames to acquire, these
frames do not have to be captured contiguously from the video stream. You
can specify that the toolbox skip a certain number of frames between frames
it acquires. To do this, set the value of the FrameGrabInterval property.

Note The FrameGrabInterval property controls the interval at which the
toolbox acquires frames from the video stream (measured in frames). This
property does not control the rate at which frames are provided by the device,
otherwise known as the frame rate.

5-28

Controlling Logging Parameters

The following figure illustrates how the FrameGrabInterval property affects
an acquisition.

Impact of FrameGrabInterval on Data Logging

Determining How Much Data Has Been Logged
To determine how many frames have been acquired by a video input object,
check the value of the FramesAcquired property. This property tells how
many frames the object has acquired since it was started. To determine how
many frames are currently available in the memory buffer, see “Determining
How Many Frames Are Available” on page 5-31.

Acquiring 100 Frames
This example illustrates how you can specify the amount of data to be
acquired and determine how much data has been acquired. (For an example
of configuring a time-based acquisition, see “Acquiring 10 Seconds of Image
Data” on page 6-5.)

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

5-29

5 Acquiring Image Data

2 Configure properties— Specify the amount of data you want to acquire
as the number of frames per trigger. By default, a video input object
acquires 10 frames per trigger. For this example, set the value of this
property to 100.

set(vid,'FramesPerTrigger',100)

3 Start the image acquisition object -— Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. To verify if the video input object is logging data, use the islogging
function.

islogging(vid)
ans =

1

The start function returns control to the command line immediately but
the object continues logging the data to the memory buffer. After acquiring
the specified number of frames, the object stops running and logging.

4 Check how many frames have been acquired — To verify that the
specified number of frames has been acquired, check the value of the
FramesAcquired property. Note that the object continuously updates the
value of the FramesAcquired property as the acquisition progresses. If you
view the value of this property several times during an acquisition, you can
see the number of frames acquired increase until logging stops.

vid.FramesAcquired
ans =

100

5 Clean up Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-30

Controlling Logging Parameters

Determining How Many Frames Are Available
The FramesAcquired property tells how many frames the object has logged
since it was started, described in “Determining How Much Data Has Been
Logged” on page 5-29. Once you move frames from the memory buffer
into the MATLAB workspace, the number of frames stored in the memory
buffer will differ from the FramesAcquired value. To determine how many
frames are currently available in the memory buffer, check the value of the
FramesAvailable property.

Note The FramesAvailable property tells the number of frames in the
memory buffer, not in the disk log, if LoggingMode is configured to 'disk' or
'disk&memory'. Because it takes longer to write frames to a disk file than
to memory, the number of frames stored in the disk log might lag behind
those stored in the memory buffer. To see how many frames are available in
the disk log, look at the value of the DiskLoggerFrameCount property. See
“Logging Image Data to Disk” on page 5-46 for more information.

This example illustrates the distinction between the FramesAcquired and the
FramesAvailable properties:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties— For this example, configure an acquisition of 15
frames.

set(vid,'FramesPerTrigger',15)

3 Start the image acquisition object— Call the start function to start
the image acquisition object.

start(vid)

5-31

5 Acquiring Image Data

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Check how many frames have been acquired — To determine how
many frames the object has acquired and how many frames are available
in the memory buffer, check the value of the FramesAcquired and
FramesAvailable properties.

vid.FramesAcquired
ans =

15

vid.FramesAvailable

ans =

15

The object updates the value of these properties continuously as it acquires
frames of data. The following figure illustrates how the object puts acquired
frames in the memory buffer as the acquisition progresses.

Frames Available After Initial Trigger Execution

5-32

Controlling Logging Parameters

5 Remove frames from the memory buffer — When you remove
frames from the memory buffer, the object decrements the value of the
FramesAvailable property by the number of frames removed.

To remove frames from the memory buffer, call the getdata function,
specifying the number of frames to retrieve. For more information about
using getdata, see “Bringing Image Data into the MATLAB Workspace”
on page 6-3.

data = getdata(vid,5);

After you execute the getdata function, check the values of the
FramesAcquired and FramesAvailable properties again. Notice that
the FramesAcquired property remains unchanged but the object has
decremented the value of the FramesAvailable property by the number of
frames removed from the memory buffer.

vid.FramesAcquired

ans =

15

vid.FramesAvailable

ans =

10

The following figure illustrates the contents of the memory buffer after
frames are removed.

5-33

5 Acquiring Image Data

Contents of Memory Buffer Before and After Removing Frames

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Delaying Data Logging After a Trigger
In some image acquisition setups, you might not want to log the first few
frames returned from your camera or other imaging device. For example,
some cameras require a short warmup time when activated. The quality of
the first few images returned by these cameras might be too dark to be useful
for your application.

To account for this characteristic of your setup, you can specify that the
toolbox skip a specified number of frames after a trigger executes. You use
the TriggerFrameDelay property to specify the number of frames you want to
skip before logging begins.

For example, to specify a delay of five frames before data logging begins after a
trigger executes, you would set the value of the TriggerFrameDelay property
to 5. The number of frames captured is defined by the FramesPerTrigger
property and is unaffected by the delay.

set(vid,'TriggerFrameDelay',5);

This figure illustrates this scenario.

5-34

Controlling Logging Parameters

Specifying a Delay Before Data Logging Begins

Specifying Multiple Triggers
When a trigger occurs, a video input object acquires the number of frames
specified by the FramesPerTrigger property and logs the data to a memory
buffer, a disk file, or both.

When it acquires the specified number of frames, the video input object
stops running. To execute another trigger, you must restart the video input
object. Restarting an object causes it to delete all the data it has stored in
the memory buffer from the previous trigger. To execute multiple triggers,
retaining the data from each trigger, you must specify a value for the
TriggerRepeat property.

Note that the TriggerRepeat property specifies the number of additional
times a trigger executes. For example, to execute a trigger three times, you
would set the value of the TriggerRepeat property to 2. In the following, vid
is a video input object created with the videoinput function.

set(vid,'TriggerRepeat',2);

This figure illustrates an acquisition with three executions of a manual
trigger. In the figure, the FramesPerTrigger property is set to 3.

5-35

5 Acquiring Image Data

Executing Multiple Triggers

5-36

Waiting for an Acquisition to Finish

Waiting for an Acquisition to Finish

In this section...

“Using the wait Function” on page 5-37

“Blocking the Command Line Until an Acquisition Completes” on page 5-38

Using the wait Function
The start function and the trigger function are asynchronous functions.
That is, they start the acquisition of frames and return control to the
MATLAB command line immediately.

In some scenarios, you might want your application to wait until the
acquisition completes before proceeding with other processing. To do this, call
the wait function immediately after the start or trigger function returns.
The wait function blocks the MATLAB command line until an acquisition
completes or a timeout value expires, whichever comes first.

By default, wait blocks the command line until a video input object stops
running. You can optionally specify that wait block the command line
until the object stops logging. For acquisitions using an immediate trigger,
video input objects always stop running and stop logging at the same
time. However, with a manual trigger configured for multiple executions
(TriggerRepeat > 0), you can use wait immediately after each call to the
trigger function to block the command line while logging is in progress, even
though the object remains in running state throughout the entire acquisition.

The following figure illustrates the flow of control at the MATLAB command
line for a single execution of an immediate trigger and a manual trigger, with
and without the wait function. A hardware trigger is similar to the manual
trigger diagram, except that the acquisition is triggered by an external signal
to the camera or frame grabber board, not by the trigger function. For an
example, see “Blocking the Command Line Until an Acquisition Completes”
on page 5-38.

5-37

5 Acquiring Image Data

Using wait to Block the MATLAB® Command Line

Blocking the Command Line Until an Acquisition
Completes
The following example illustrates how to use the wait function to put a 60
second time limit on the execution of a hardware trigger. If the hardware
trigger does not execute within the time limit, wait returns control to the
MATLAB command line.

5-38

Waiting for an Acquisition to Finish

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure a hardware trigger — Use the triggerinfo function
to determine valid configurations of the TriggerSource and
TriggerCondition properties. See “Determining Valid Configurations” on
page 5-7 for more information. In this example, triggerinfo returns the
following valid trigger configurations.

triggerinfo(vid)
Valid Trigger Configurations:

TriggerType: TriggerCondition: TriggerSource:
'immediate' 'none' 'none'
'manual' 'none' 'none'

'hardware' 'risingEdge' 'TTL'
'hardware' 'fallingEdge' 'TTL'

Configure the video input object trigger properties to one of the valid
combinations returned by triggerinfo. You can specify each property
value as an argument to the triggerconfig function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

3 Configure other object properties— This example also sets the value
of the FramesPerTrigger property to configure an acquisition large enough
to produce a noticeable duration. (The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',100)

5-39

5 Acquiring Image Data

4 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The start function sets the object running and returns control to the
command line.

5 Block the command line until the acquisition finishes — After the
start function returns, call the wait function.

wait(vid,60)

The wait function blocks the command line until the hardware trigger
fires and acquisition completes or until the amount of time specified by
the timeout value expires.

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-40

Managing Memory Usage

Managing Memory Usage

In this section...

“Memory Usage” on page 5-41

“Monitoring Memory Usage” on page 5-41

“Modifying the Frame Memory Limit” on page 5-42

“Freeing Memory” on page 5-43

Memory Usage
The first time it needs to allocate memory to store an image frame, the
toolbox determines the total amount of memory it has available to store
acquired image frames. By default, the toolbox sets this value, called the
frame memory limit, to equal all the physical memory that is available when
the toolbox is first accessed.

Image data can require a lot of memory. For example, even a relatively small
(96-by-128) 24-bit color image requires almost 37 K bytes for each frame.

whos

Name Size Bytes Class

rgb_image 96x128x3 36864 uint8 array

Monitoring Memory Usage
The toolbox includes a utility function, called imaqmem, that provides
information about the toolbox’s current memory usage.

The imaqmem function returns a structure that contains several memory
usage statistics including the total amount of physical memory available, the
amount of physical memory currently in use, and a value, called the memory
load, that characterizes the current memory usage.

To illustrate, this example calls imaqmem and then uses the frame memory
limit and the current frame memory usage statistics to calculate how much
memory is left for image frame storage.

5-41

5 Acquiring Image Data

out = imaqmem;
mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

To see an example of using a callback function to monitor memory usage, see
“Monitoring Memory Usage” on page 7-18.

Modifying the Frame Memory Limit
To enable your image acquisition application to work with more image frames,
you might want to increase the frame memory limit. Using the imaqmem
function you can determine the current frame memory limit and specify a new
one. The following example illustrates this process.

1 Determine the current frame memory limit— This example calls the
imaqmem function, requesting the value of the FrameMemoryLimit field.

out = imaqmem('FrameMemoryLimit')

out =

15425536

2 Set the frame memory limit to a new value— When you call imaqmem
with a numeric argument, it sets the FrameMemoryLimit field to the value.

imaqmem(36000000)

3 Verify the frame memory limit setting — Call imaqmem again,
requesting the value of the FrameMemoryLimit field.

out = imaqmem('FrameMemoryLimit')

out =

36000000

5-42

Managing Memory Usage

Freeing Memory
At times, while acquiring image data, you might want to delete some or all
of the frames that are stored in memory. Using the flushdata function, you
can delete all the frames currently stored in memory or only those frames
associated with the execution of a trigger.

The following example illustrates how to use flushdata to delete all the
frames in memory or one trigger’s worth of frames.

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — For this example, configure an acquisition of
five frames per trigger and, to show the effect of flushdata, configure
multiple triggers using the TriggerRepeat property.

vid.FramesPerTrigger = 5
vid.TriggerRepeat = 2;

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger, acquires five frames of data, and
repeats this trigger two more times. After logging the specified number of
frames, the object stops running.

5-43

5 Acquiring Image Data

To verify that the object acquired data, view the value of the
FramesAvailable property. This property reports how many frames are
currently stored in the memory buffer.

vid.FramesAvailable
ans =

15

4 Delete a trigger’s worth of image data— Call the flushdata function,
specifying the mode 'triggers'. This deletes the frames associated with
the oldest trigger.

flushdata(vid,'triggers');

The following figure shows the frames acquired before and after the call
to flushdata. Note how flushdata deletes the frames associated with
the oldest trigger.

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

10

5-44

Managing Memory Usage

5 Empty the entire memory buffer — Calling flushdata without
specifying the mode deletes all the frames stored in memory.

flushdata(vid);

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

0

6 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-45

5 Acquiring Image Data

Logging Image Data to Disk

In this section...

“Logging Data to Disk Using VideoWriter” on page 5-46

“Logging Data to Disk Using VideoWriter” on page 5-48

“Logging Data to Disk Using an AVI File” on page 5-49

“Creating an AVI File Object for Logging” on page 5-51

“Logging Data to Disk Using an AVI File” on page 5-53

Logging Data to Disk Using VideoWriter
While a video input object is running, you can log image data being acquired
to a disk file. Logging image data to disk provides a record of your data. You
can log data to several formats but VideoWriter is recommended, instead
of using an AVI file.

For the best performance, logging to disk requires a MATLAB VideoWriter
object, which is a MATLAB function, not an Image Acquisition Toolbox
function. After you create and configure a VideoWriter object, provide it to
the videoinput object’s DiskLogger property.

VideoWriter provides a number of different profiles that log the data in
different formats. The following example uses the Motion JPEG 2000 profile,
which can log single-banded (grayscale) data as well as multi-byte data.
Supported profiles are:

• 'Motion JPEG 2000'— Compressed Motion JPEG 2000 file.

• 'Archival'— Motion JPEG 2000 file with lossless compression.

• 'Motion JPEG AVI'— Compressed AVI file using Motion JPEG codec.

• 'Uncompressed AVI'— Uncompressed AVI file with RGB24 video.

• 'MPEG-4'— Compressed MPEG-4 file with H.264 encoding (systems with
Windows 7 or Mac OS X 10.7 and later).

• 'Grayscale AVI' — Uncompressed AVI file with grayscale video. Only
used for monochrome devices.

5-46

Logging Image Data to Disk

• 'Indexed AVI'— Uncompressed AVI file with indexed video. Only used
for monochrome devices.

5-47

5 Acquiring Image Data

Logging Data to Disk Using VideoWriter
This example uses a GigE Vision device in a grayscale format (Mono10).

1 Create a video input object that accesses a GigE Vision image acquisition
device and uses grayscale format at 10 bits per pixel.

vidobj = videoinput('gige', 1, 'Mono10');

2 You can log acquired data to memory, to disk, or both. By default, data is
logged to memory. To change the logging mode to disk, configure the video
input object’s LoggingMode property.

set(vidobj, 'LoggingMode', 'disk')

3 Create a VideoWriter object with the profile set to Motion JPEG 2000.

logfile = VideoWriter('logfile.mj2, 'Motion JPEG 2000')

4 Configure the video input object to use the VideoWriter object.

vidobj.DiskLogger = logfile;

5 Now that the video input object is configured for logging data to a Motion
JPEG 2000 file, initiate the acquisition.

start(vidobj)

6 Wait for the acquisition to finish.

wait(vidobj, 5)

7 When logging large amounts of data to disk, disk writing occasionally lags
behind the acquisition. To determine whether all frames are written to
disk, you can optionally use the DiskLoggerFrameCount property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
pause(.1)

end

5-48

Logging Image Data to Disk

8 You can verify that the FramesAcquired and DiskLoggerFrameCount
properties have identical values by using these commands and comparing
the output.

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

9 When the video input object is no longer needed, delete it and clear it from
the workspace.

delete(vidobj)
clear vidobj

Guidelines for Using a VideoWriter Object to Log Image Data
Note the following when using VideoWriter.

• You should not delete the video input object until logging has been
completed as indicated by the DiskLoggerFrameCount property equaling
the FramesAcquired property. Doing so will cause disk logging to stop
without all of the data being logged.

• If START is called multiple times without supplying a new VideoWriter
object, the contents of the previous file will be erased when START is called.

• Once the VideoWriter object has been passed to the DiskLogger property,
you should not modify it.

Logging Data to Disk Using an AVI File
While a video input object is running, you can log the image data being
acquired to a disk file. Logging image data to disk provides a record of
your data. You can log data to several formats but we recommend using
VideoWriter, as described in the previous section. However, if you need to use
an AVI file, this section describes how to do that.

To set up data logging to disk:

1 Create a disk file to store the data. The toolbox logs the data to disk in
Audio Video Interleave (AVI) format because this format provides data
compression capabilities that allow for efficient storage. You must use the

5-49

5 Acquiring Image Data

MATLAB avifile function to create this log file. For more information,
see “Creating an AVI File Object for Logging” on page 5-51.

2 Set the value of the video input object LoggingMode property to 'disk' or
'disk&memory'.

3 Set the value of the video input object DiskLogger property to the AVI
file object created in step 1.

The following figure shows how the toolbox adds frames to the AVI file when
a trigger occurs. With each subsequent trigger, the toolbox appends the
acquired frames to the end of the AVI file. The frames must have the same
dimensions. For an example of how to set up disk data logging, see “Logging
Data to Disk Using an AVI File” on page 5-53.

Logging Data to a Disk File

Note AVI files are limited to a bit-depth of 8 bits per pixel for each band. If
you have higher bit data, you should not log it to an AVI file since the AVI
format is restricted to 8-bit data. If you do log higher bit data to an AVI file, it
will be scaled and then logged as 8-bit data.

5-50

Logging Image Data to Disk

Creating an AVI File Object for Logging
To create an AVI file in the MATLAB environment, use the avifile function.
You specify the name of the AVI file to the avifile function. For example, to
create the AVI file named my_datalog.avi, enter this code at the MATLAB
command prompt.

aviobj = avifile('my_datalog.avi');

The avifile function returns an AVI file object. You can use the AVI file
object returned by the avifile function, aviobj, to modify characteristics
of the AVI file by setting the values of the object’s properties. For example,
you can specify the codec used for data compression or specify the desired
quality of the output.

For more information about AVI file objects, see the MATLAB avifile
documentation. For more information about using AVI files to log image
data, see the following topics.

• “Logging Grayscale Images Using an AVI File” on page 5-51

• “Guidelines for Using an AVI File Object to Log Image Data” on page 5-51

• “Closing the DiskLogger AVI file” on page 5-52

Logging Grayscale Images Using an AVI File
When logging images in grayscale format, such as RS170, you must set the
value of the AVI object’s Colormap property to be a grayscale colormap.
Otherwise, the image data in the AVI file will not display correctly.

This example uses the MATLAB gray function to create a grayscale colormap
and sets the value of the AVI file object’s Colormap property with this
colormap.

logfile = avifile('my_datalog.avi','Colormap',gray(256));

Guidelines for Using an AVI File Object to Log Image Data
When you specify the AVI file object as the value of the DiskLogger property,
you are creating a copy of the AVI file object. Do not access the AVI file object
using the original variable name, aviobj, while the video input object is using

5-51

5 Acquiring Image Data

the file for data logging. To avoid file access conflicts, keep in mind these
guidelines when using an AVI file for data logging:

• Do not close an AVI file object while it is being used for data logging.

• Do not use the AVI file addframe function to add frames to the AVI file
object while it is being used for data logging.

• Do not change the values of any AVI file object properties while it is being
used for data logging.

Note AVI files are limited to a bit-depth of 8 bits per pixel for each band. If
you have higher bit data, you should not log it to an AVI file since the AVI
format is restricted to 8-bit data. If you do log higher bit data to an AVI file, it
will be scaled and then logged as 8-bit data.

Closing the DiskLogger AVI file
When data logging has ended, close the AVI file to make it accessible
outside the MATLAB environment. Use the value of the video input object
DiskLogger property to reference the AVI file, rather than the variable
returned when you created the AVI file object (aviobj). See “Logging Data to
Disk Using an AVI File” on page 5-53 for an example.

Before you close the file, make sure that the video input object has finished
logging frames to disk. Because logging to disk takes more time than logging
to memory, the completion of disk logging can lag behind the completion of
memory logging. To determine when logging to disk is complete, check the
value of the DiskLoggerFrameCount property; this property tells how many
frames have been logged to disk.

Note When you log frames to disk, the video input object queues the frames
for writing but the operating system might not perform the write operation
immediately. Closing an AVI file causes the data to be written to the disk.

5-52

Logging Image Data to Disk

Logging Data to Disk Using an AVI File
This example illustrates how to configure a video input object to log data
to a disk file:

1 Create a MATLAB AVI file object— Create the MATLAB AVI file that
you want to use for data logging, using the avifile function. You specify
the name of the AVI file when you create it.

my_log = 'my_datalog.avi';
aviobj = avifile(my_log);

aviobj

Adjustable parameters:
Fps: 15.0000

Compression: 'Indeo3'
Quality: 75

KeyFramePerSec: 2.1429
VideoName: 'my_datalog.avi'

Automatically updated parameters:
Filename: 'my_datalog.avi'

TotalFrames: 0
Width: 0

Height: 0
Length: 0

ImageType: 'Unknown'
CurrentState: 'Open'

2 Configure properties of the AVI file object — You can optionally
configure the properties of the AVI file object. The AVI file object supports
properties that control the data compression used, image quality, and
other characteristics of the file. The example sets the quality property
to a midlevel value. By lowering the quality, the AVI file object creates
smaller log files.

aviobj.Quality = 50;

5-53

5 Acquiring Image Data

Because this example acquires image data in grayscale format (RS170),
you must also specify the colormap used with the AVI object to ensure that
the stored data displays correctly.

aviobj.Colormap = gray(256);

3 Create a video input object— This example creates a video input object
for a Matrox image acquisition device, using the default video format
M_RS170. To run this example on your system, use the imaqhwinfo
function to get the video input object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

4 Configure video input object properties — Set up disk logging by
setting the value of the DiskLogger property to be aviobj, the AVI file
object created in step 1. Then, set the LoggingMode property to 'disk' (or
'disk&memory'). This example also sets the TriggerRepeat property.

vid.LoggingMode = 'disk&memory';
vid.DiskLogger = aviobj;
vid.TriggerRepeat = 3;

5 Start the video input object— Start logging data to disk.

start(vid)

The object executes an immediate trigger, acquires frames of data, repeats
the trigger three additional times, and then stops.

To verify that all the frames have been logged to the AVI file, check the
value of the DiskLoggerFrameCount property. This property tells the
number of frames that have been logged to disk.

vid.DiskLoggerFrameCount

ans =

40

5-54

Logging Image Data to Disk

Note Because it takes longer to write frames to a disk file than to memory,
the value of the DiskLoggerFrameCount property can lag behind the value
of the FramesAvailable property, which specifies the number of frames
logged to memory.

To verify that a disk file was created, go to the directory in which the log
file resides and make sure it exists. The exist function returns 2 if the
file exists.

if(exist(my_log)==2)
disp('AVI file created.')

end

6 Close the AVI file object — Close the AVI file to make it available
outside the MATLAB environment. Closing the AVI file object ensures that
the logged data is written to the disk file. Be sure to use the value of the
video input object DiskLogger property, vid.DiskLogger, to reference the
AVI file object, not the original variable, aviobj, returned by the avifile
function.

aviobj = close(vid.DiskLogger);

Use the original variable, aviobj, as the return value when closing an
AVI file object.

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

5-55

5 Acquiring Image Data

5-56

6

Working with Acquired
Image Data

When you trigger an acquisition, the toolbox stores the image data in a
memory buffer, a disk file, or both. To work with this data, you must bring it
into the MATLAB workspace.

This chapter describes how you use video input object properties and toolbox
functions to bring the logged data into the MATLAB workspace.

• “Image Acquisition Overview” on page 6-2

• “Bringing Image Data into the MATLAB Workspace” on page 6-3

• “Working with Image Data in MATLAB Workspace” on page 6-12

• “Retrieving Timing Information” on page 6-24

6 Working with Acquired Image Data

Image Acquisition Overview
When a trigger occurs, the toolbox acquires frames from the video stream and
logs the frames to a buffer in memory, a disk file, or both, depending on the
value of the LoggingMode property. To work with this logged image data, you
must bring it into the MATLAB workspace.

The following figure illustrates a group of frames being acquired from the
video stream, logged to memory and disk, and brought into the MATLAB
workspace as a multidimensional numeric array. Note that when frames are
brought into the MATLAB workspace, they are removed from the memory
buffer.

Overview of Image Acquisition

6-2

Bringing Image Data into the MATLAB® Workspace

Bringing Image Data into the MATLAB Workspace

In this section...

“Overview” on page 6-3

“Moving Multiple Frames into the Workspace” on page 6-4

“Viewing Frames in the Memory Buffer” on page 6-6

“Bringing a Single Frame into the Workspace” on page 6-10

Overview
The toolbox provides three ways to move frames from the memory buffer
into the MATLAB workspace:

• Removing multiple frames from the buffer — To move a specified
number of frames from the memory buffer into the workspace, use the
getdata function. The getdata function removes the frames from the
memory buffer as it moves them into the workspace. The function blocks
the MATLAB command line until all the requested frames are available, or
until a timeout value expires. For more information, see “Moving Multiple
Frames into the Workspace” on page 6-4.

• Viewing the most recently acquired frames in the buffer— To bring
the most recently acquired frames in the memory buffer into the workspace
without removing them from the buffer, use the peekdata function. When
returning frames, peekdata starts with the most recently acquired frame
and works backward in the memory buffer. In contrast, getdata starts
at the beginning of the buffer, returning the oldest acquired frame first.
peekdata does not block the command line and is not guaranteed to return
all the frames you request. For more information, see “Viewing Frames
in the Memory Buffer” on page 6-6.

• Bringing a single frame of data into the workspace — As a
convenience, the toolbox provides the getsnapshot function, which
returns a single frame of data into the MATLAB workspace. Because the
getsnapshot function does not require starting the object or triggering an
acquisition, it is the easiest way to bring image data into the workspace.
getsnapshot is independent of the memory buffer; it can return a frame
even if the memory buffer is empty, and the frame returned does not

6-3

6 Working with Acquired Image Data

affect the value of the FramesAvailable property. For more information,
see “Bringing a Single Frame into the Workspace” on page 6-10. For an
example of using getsnapshot, see the Image Acquisition Toolbox example
Acquiring a Single Image in a Loop in the Examples list at the top of
the Image Acquisition Toolbox main Documentation Center page, or open
the file demoimaq_GetSnapshot.m in the MATLAB Editor.

Moving Multiple Frames into the Workspace
To move multiple frames of data from the memory buffer into the MATLAB
workspace, use the getdata function. By default, getdata retrieves the
number of frames specified in the FramesPerTrigger property but you can
specify any number. See the getdata reference page for complete information
about this function.

Note When the getdata function moves frames from the memory buffer into
the workspace, it removes the frames from the memory buffer.

In this figure, getdata is called at T1 with a request for 15 frames but only
six frames are available in the memory buffer. getdata blocks until the
specified number of frames becomes available, at T2, at which point getdata
moves the frames into the MATLAB workspace and returns control to the
command prompt.

6-4

Bringing Image Data into the MATLAB® Workspace

getdata Blocks Until Frames Become Available

Acquiring 10 Seconds of Image Data
This example shows how you can configure an approximate time-based
acquisition using the FramesPerTrigger property:

1 Create an image acquisition object — This example creates a video
input object for a Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor
for your image acquisition device and substitute that syntax for the
following code.

vid = videoinput('winvideo',1);

2 Configure properties — To acquire 10 seconds of data, determine the
frame rate of your image acquisition device and then multiply the frame
rate by the number of seconds of data you want to acquire. The product of
this multiplication is the value of the FramesPerTrigger property.

For this example, assume a frame rate of 30 frames per second (fps).
Multiplying 30 by 10, you need to set the FramesPerTrigger property to
the value 300.

6-5

6 Working with Acquired Image Data

set(vid,'FramesPerTrigger',300)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — To verify that you
acquired the amount of data you wanted, use the optional getdata syntax
that returns the timestamp of every frame acquired. The difference
between the first timestamp and the last timestamp should approximate
the amount of data you expected.

[data time] = getdata(vid,300);

elapsed_time = time(300) - time(1)

10.0467

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Frames in the Memory Buffer
To view sample frames from the memory buffer without removing them, use
the peekdata function.

The peekdata function always returns the most recently acquired frames
in the memory buffer. For example, if you request three frames, peekdata
returns the most recently acquired frame in the buffer at the time of the
request and the two frames that immediately precede it.

The following figure illustrates this process. The command peekdata(vid,3)
is called at three different times (T1, T2, and T3). The shaded frames indicate

6-6

Bringing Image Data into the MATLAB® Workspace

the frames returned by peekdata at each call. (peekdata returns frames
without removing them from the memory buffer.)

Note in the figure that, at T3, only two frames have become available since
the last call to peekdata. In this case, peekdata returns only the two frames,
with a warning that it returned less data than was requested.

Frames Returned by peekdata

Note The peekdata function does not return any data while running if in
disk logging mode.

The following example illustrates how to use peekdata:

1 Create an image acquisition object — This example creates a video
input object for a Data Translation image acquisition device. To run this
example on your system, use the imaqhwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

6-7

6 Working with Acquired Image Data

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a manual trigger.
You must use the triggerconfig function to specify the trigger type.

triggerconfig(vid,'manual')

In addition, configure a large enough acquisition to allow several calls to
peekdata before it finishes.

set(vid,'FramesPerTrigger',300);

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The video object is now running but not logging.

isrunning(vid)

ans =

1

islogging(vid)

ans =

0

4 Use peekdata to view frames before a trigger— If you call peekdata
before you trigger the acquisition, peekdata can only return a single frame
of data because data logging has not been initiated and the memory buffer
is empty. If more than one frame is requested, peekdata issues a warning
that it is returning fewer than the requested number of frames.

pdata = peekdata(vid,50);
Warning: PEEKDATA could not return all the frames requested.

Verify that peekdata returned a single frame. A single frame of data
should have the same width and height as specified by the ROIPosition

6-8

Bringing Image Data into the MATLAB® Workspace

property and the same number of bands, as specified by the NumberOfBands
property. In this example, the video format of the data is RGB so the value
of the NumberOfBands property is 3.

whos
Name Size Bytes Class

pdata 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =
0

5 Trigger the acquisition — Call the trigger function to trigger an
acquisition.

trigger(vid)

The object begins logging frames to the memory buffer.

6 View the most recently acquired frames — While the acquisition is
in progress, call peekdata several times to view the latest frames in the
memory buffer. Depending on the number of frames you request, and the
timing of these requests, peekdata might return fewer than the number
of frames you specify.

pdata = peekdata(vid,50);

To verify that peekdata returned the frames you requested, check the
dimensions of pdata. peekdata returns a four-dimensional array of frames,
where the last dimension indicates the number of frames returned.

whos
Name Size Bytes Class

pdata 4-D 1843200 uint8 array
vid 1x1 1060 videoinput object

size(pdata)

6-9

6 Working with Acquired Image Data

ans =

96 128 3 50

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Bringing a Single Frame into the Workspace
To bring a single frame of image data into the MATLAB workspace, use the
getsnapshot function. You can call the getsnapshot function at any time
after object creation.

This example illustrates how simple it is to use the getsnapshot function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox device. To run this example on your system,
use the imaqhwinfo function to get the object constructor for your image
acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Bring a frame into the workspace— Call the getsnapshot function to
bring a frame into the workspace. Note that you do not need to start the
video input object before calling the getsnapshot function.

frame = getsnapshot(vid);

The getsnapshot function returns an image of the same width and height
as specified by the ROIPosition property and the same number of bands as
specified by the NumberOfBands property. In this example, the video format
of the data is RGB so the value of the NumberOfBands property is 3.

whos
Name Size Bytes Class

frame 96x128x3 36864 uint8 array
vid 1x1 1060 videoinput object

6-10

Bringing Image Data into the MATLAB® Workspace

Note that the frame returned by getsnapshot is not removed from the
memory buffer, if frames are stored there, and does not affect the value
of the FramesAvailable property.

3 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

For an example of using getsnapshot, see the Image Acquisition Toolbox
example Acquiring a Single Image in a Loop in the Examples list at the
top of the Image Acquisition Toolbox main Documentation Center page, or
open the file demoimaq_GetSnapshot.m in the MATLAB Editor.

6-11

6 Working with Acquired Image Data

Working with Image Data in MATLAB Workspace

In this section...

“Understanding Image Data” on page 6-12

“Determining the Dimensions of Image Data” on page 6-13

“Determining the Data Type of Image Frames” on page 6-16

“Specifying the Color Space” on page 6-17

“Viewing Acquired Data” on page 6-23

Understanding Image Data
The illustrations in this documentation show the video stream and the
contents of the memory buffer as a sequence of individual frames. In reality,
each frame is a multidimensional array. The following figure illustrates the
format of an individual frame.

Format of an Individual Frame

The following sections describes how the toolbox

• Determines the dimensions of the data returned

• Determines the data type used for the data

6-12

Working with Image Data in MATLAB® Workspace

• Determines the color space of the data

This section also describes several ways to view acquired image data.

Determining the Dimensions of Image Data
The video format used by the image acquisition device is the primary
determinant of the width, height, and the number of bands in each image
frame. Image acquisition devices typically support multiple video formats.
You select the video format when you create the video input object (described
in “Specifying the Video Format” on page 4-12). The video input object stores
the video format in the VideoFormat property.

Industry-standard video formats, such as RS170 or PAL, include specifications
of the image frame width and height, referred to as the image resolution.
For example, the RS170 standard defines the width and height of the image
frame as 640-by-480 pixels. Other devices, such as digital cameras, support
the definition of many different, nonstandard image resolutions. The video
input object stores the video resolution in the VideoResolution property.

Each image frame is three dimensional; however, the video format determines
the number of bands in the third dimension. For color video formats, such as
RGB, each image frame has three bands: one each for the red, green, and blue
data. Other video formats, such as the grayscale RS170 standard, have only a
single band. The video input object stores the size of the third dimension in
the NumberOfBands property.

Note Because devices typically express video resolution as width-by-height,
the toolbox uses this convention for the VideoResolution property. However,
when data is brought into the MATLAB workspace, the image frame
dimensions are listed in reverse order, height-by-width, because MATLAB
expresses matrix dimensions as row-by-column.

ROIs and Image Dimensions
When you specify a region-of-interest (ROI) in the image being captured,
the dimensions of the ROI determine the dimensions of the image frames
returned. The VideoResolution property specifies the dimensions of the

6-13

6 Working with Acquired Image Data

image data being provided by the device; the ROIPosition property specifies
the dimensions of the image frames being logged. See the ROIPosition
property reference page for more information.

Video Format and Image Dimensions
The following example illustrates how video format affects the size of the
image frames returned.

1 Select a video format— Use the imaqhwinfo function to view the list of
video formats supported by your image acquisition device. This example
shows the video formats supported by a Matrox Orion frame grabber. The
formats are industry standard, such as RS170, NTSC, and PAL. These
standards define the image resolution.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

2 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device using the default video
format, RS170. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and
substitute that syntax for the following code.

vid = videoinput('matrox',1);

6-14

Working with Image Data in MATLAB® Workspace

3 View the video format and video resolution properties— The toolbox
creates the object with the default video format. This format defines the
video resolution.

get(vid,'VideoFormat')

ans =

M_RS170

get(vid,'VideoResolution')

ans =

[640 480]

4 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

The dimensions of the returned data reflect the image resolution and the
value of the NumberOfBands property.

vid.NumberOfBands
ans =

1

size(frame)

ans =

480 640

5 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames
of data.

6-15

6 Working with Acquired Image Data

6 Bring multiple frames into the workspace — Call the getdata
function to bring multiple image frames into the MATLAB workspace.

data = getdata(vid,10);

The getdata function brings 10 frames of data into the workspace.
Note that the returned data is a four-dimensional array: each frame is
three-dimensional and the nth frame is indicated by the fourth dimension.

size(data)

ans =

480 640 1 10

7 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining the Data Type of Image Frames
By default, the toolbox returns image frames in the data type used by the
image acquisition device. If there is no MATLAB data type that matches
the object’s native data type, getdata chooses a MATLAB data type that
preserves numerical accuracy. For example, in RGB 555 format, each color
component is expressed in 5-bits. getdata returns each color as a uint8 value.

You can specify the data type you want getdata to use for the returned
data. For example, you can specify that getdata return image frames as an
array of class double. To see a list of all the data types supported, see the
getdata reference page.

The following example illustrates the data type of returned image data.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

6-16

Working with Image Data in MATLAB® Workspace

vid = videoinput('matrox',1);

2 Bring a single frame into the workspace — Call the getsnapshot
function to bring a frame into the workspace.

frame = getsnapshot(vid);

3 View the class of the returned data — Use the class function to
determine the data type used for the returned image data.

class(frame)

ans =

uint8

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Specifying the Color Space
For most image acquisition devices, the video format of the video stream
determines the color space of the acquired image data, that is, the way color
information is represented numerically.

For example, many devices represent colors as RGB values. In this color
space, colors are represented as a combination of various intensities of red,
green, and blue. Another color space, widely used for digital video, is the
YCbCr color space. In this color space, luminance (brightness or intensity)
information is stored as a single component (Y). Chrominance (color)
information is stored as two color-difference components (Cb and Cr). Cb
represents the difference between the blue component and a reference value.
Cr represents the difference between the red component and a reference value.

The toolbox can return image data in grayscale, RGB, and YCbCr. To
specify the color representation of the image data, set the value of the
ReturnedColorSpace property. To display image frames using the image,
imagesc, or imshow functions, the data must use the RGB color space.

6-17

6 Working with Acquired Image Data

Another MathWorks® product, the Image Processing Toolbox software,
includes functions that convert YCbCr data to RGB data, and vice versa.

Note Some devices that claim to support the YUV color space actually
support the YCbCr color space. YUV is similar to YCbCr but not identical.
The difference between YUV and YCbCr is the scaling factor applied to the
result. YUV refers to a particular scaling factor used in composite NTSC
and PAL formats. In most cases, you can specify the YCbCr color space for
devices that support YUV.

You can determine your device’s default color space by using the get function:
get(vid,'ReturnedColorSpace'), where vid is the name of the video object.
An example of this is shown in step 2 in the example below. There may be
situations when you wish to change the color space. The example below shows
a case where the default color space is rgb, and you change it to grayscale
(step 3).

The following example illustrates how to specify the color space of the
returned image data.

1 Create an image acquisition object — This example creates a video
input object for a generic Windows image acquisition device. To run this
example on your system, use the imaqhwinfo function to get the object
constructor for your image acquisition device and substitute that syntax
for the following code.

vid = videoinput('winvideo',1);

2 View the default color space used for the data — The value of the
ReturnedColorSpace property indicates the color space of the image data.

get(vid,'ReturnedColorSpace')

ans =

rgb

6-18

Working with Image Data in MATLAB® Workspace

3 Modify the color space used for the data— To change the color space
of the returned image data, set the value of the ReturnedColorSpace
property.

set(vid,'ReturnedColorSpace','grayscale')

ans =

grayscale

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Converting Bayer Images
You can use the ReturnedColorSpace and BayerSensorAlignment properties
to control Bayer demosaicing.

If your camera uses Bayer filtering, the toolbox supports the Bayer pattern
and can return color if desired. By setting the ReturnedColorSpace property
to 'bayer', the Image Acquisition Toolbox software will demosaic Bayer
patterns returned by the hardware. This color space setting will interpolate
Bayer pattern encoded images into standard RGB images.

In order to perform the demosaicing, the toolbox needs to know the pixel
alignment of the sensor. This is the order of the red, green, and blue sensors
and is normally specified by describing the four pixels in the upper-left corner
of the sensor. It is the band sensitivity alignment of the pixels as interpreted
by the camera’s internal hardware. You must get this information from the
camera’s documentation and then specify the value for the alignment.

If your camera can return Bayer data, the toolbox can automatically convert it
to RGB data for you, or you can specify it to do so. The following two examples
illustrate both use cases.

6-19

6 Working with Acquired Image Data

Manual Conversion

The camera in this example has a Bayer sensor. The GigE Vision™ standard
allows cameras to inform applications that the data is Bayer encoded and
provides enough information for the application to convert the Bayer pattern
into a color image. In this case the toolbox automatically converts the Bayer
pattern into an RGB image.

1 Create a video object vid using the GigE Vision adaptor and the designated
video format.

vid = videoinput('gige', 1, 'BayerGB8_640x480');

2 View the default color space used for the data.

vid.ReturnedColorSpace

ans =

rgb

3 Create a one-frame image img using the getsnapshot function.

img = getsnapshot(vid);

4 View the size of the acquired image.

size(img)

ans =

480 640 3

5 Sometimes you might not want the toolbox to automatically convert the
Bayer pattern into a color image. For example, there are a number of
different algorithms to convert from a Bayer pattern into an RGB image and
you might wish to specify a different one than the toolbox uses or you might
want to further process the raw data before converting it into a color image.

% Set the color space to grayscale.
vid.ReturnedColorSpace = 'grayscale';

6-20

Working with Image Data in MATLAB® Workspace

% Acquire another image frame.
img = getsnapshot(vid);

% Now check the size of the new frame acquired using grayscale.
size(img)

ans =

480 640

Notice how the size changed from the rgb image to the grayscale image
by comparing the size output in steps 4 and 5.

6 You can optionally use the demosaic function in the Image Processing
Toolbox to convert Bayer patterns into color images.

% Create an image colorImage by using the demosaic funtion on the
% image img and convert it to color.
colorImage = demosaic(img, 'gbrg');

% Now check the size of the new color image.
size(colorImage)

ans =

480 640 3

7 Always remove image acquisition objects from memory, and the variables
that reference them, when you no longer need them.

delete(vid)
clear vid

Automatic Conversion

The camera in this example returns data that is a Bayer mosaic, but the
toolbox doesn’t know it since the DCAM standard doesn’t have any way
for the camera to communicate that to software applications. You need to
know that by reading the camera specifications or manual. The toolbox can
automatically convert the Bayer encoded data to RGB data, but it must be
programmed to do so.

6-21

6 Working with Acquired Image Data

1 Create a video object vid using the DCAM adaptor and the designated
video format for raw data.

vid = videoinput('dcam', 1, 'F7_RAW8_640x480');

2 View the default color space used for the data.

vid.ReturnedColorSpace

ans =

grayscale

3 Create a one-frame image img using the getsnapshot function.

img = getsnapshot(vid);

4 View the size of the acquired image.

size(img)

ans =

480 640

5 The value of the ReturnedColorSpace property is grayscale because
Bayer data is single-banded and the toolbox doesn’t yet know that it needs
to decode the data. Setting the ReturnedColorSpace property to 'bayer'
indicates that the toolbox should decode the data.

% Set the color space to Bayer.
vid.ReturnedColorSpace = 'bayer';

6 In order to properly decode the data, the toolbox also needs to know
the alignment of the Bayer filter array. This should be in the camera
documentation. You can then use the BayerSensorAlignment property
to set the alignment.

% Set the alignment.
vid.BayerSensorAlignment = 'grbg';

The getdata and getsnapshot functions will now return color data.

6-22

Working with Image Data in MATLAB® Workspace

% Acquire another image frame.
img = getsnapshot(vid);

% Now check the size of the new frame acquired returning color data.
size(img)

ans =

480 640 3

Remove the image acquisition object from memory.

delete(vid)
clear vid

Viewing Acquired Data
Once you bring the data into the MATLAB workspace, you can view it as you
would any other image in MATLAB.

The Image Acquisition Toolbox software includes a function, imaqmontage,
that you can use to view all the frames of a multiframe image array in a
single MATLAB image object. imaqmontage arranges the frames so that they
roughly form a square. imaqmontage can be useful for visually comparing
multiple frames.

MATLAB includes two functions, image and imagesc, that display images in
a figure window. Both functions create a MATLAB image object to display the
frame. You can use image object properties to control aspects of the display.
The imagesc function automatically scales the input data.

The Image Processing Toolbox software includes an additional display routine
called imshow. Like image and imagesc, this function creates a MATLAB
image object. However, imshow also automatically sets various image object
properties to optimize the display.

6-23

6 Working with Acquired Image Data

Retrieving Timing Information

In this section...

“Introduction” on page 6-24

“Determining When a Trigger Executed” on page 6-24

“Determining When a Frame Was Acquired” on page 6-25

“Determining the Frame Delay Duration” on page 6-26

Introduction
The following sections describe how the toolbox provides acquisition timing
information, particularly,

• Determining when a trigger executed

• Determining when a particular frame was acquired

To see an example of retrieving timing information, see “Determining the
Frame Delay Duration” on page 6-26.

Determining When a Trigger Executed
To determine when a trigger executed, check the information returned by
a trigger event in the object’s event log. You can also get access to this
information in a callback function associated with a trigger event. For more
information, see “Retrieving Event Information” on page 7-8.

As a convenience, the toolbox returns the time of the first trigger execution
in the video input object’s InitialTriggerTime property. This figure
indicates which trigger is returned in this property when multiple triggers
are configured.

6-24

Retrieving Timing Information

InitialTriggerTime Records First Trigger Execution

The trigger timing information is stored in MATLAB clock vector format. The
following example displays the time of the first trigger for the video input
object vid. The example uses the MATLAB datestr function to convert the
information into a form that is more convenient to view.

datestr(vid.InitialTriggerTime)

ans =

02-Mar-2007 13:00:24

Determining When a Frame Was Acquired
The toolbox provides two ways to determine when a particular frame was
acquired:

• By the absolute time of the acquisition

• By the elapsed time relative to the execution of the trigger

You can use the getdata function to retrieve both types of timing information.

Getting the Relative Acquisition Time
When you use the getdata function, you can optionally specify two return
values. One return value contains the image data; the other return value
contains a vector of timestamps that measure, in seconds, the time when the
frame was acquired relative to the first trigger.

[data time] = getdata(vid);

6-25

6 Working with Acquired Image Data

To see an example, see “Determining the Frame Delay Duration” on page 6-26.

Getting the Absolute Acquisition Time
When you use the getdata function, you can optionally specify three return
values. The first contains the image data, the second contains a vector of
relative acquisition times, and the third is an array of structures where each
structure contains metadata associated with a particular frame.

[data time meta] = getdata(vid);

Each structure in the array contains the following four fields. The AbsTime
field contains the absolute time the frame was acquired. You can also retrieve
this metadata by using event callbacks. See “Retrieving Event Information”
on page 7-8 for more information.

Frame Metadata

Field Name Description

AbsTime Absolute time the frame was acquired, returned in
MATLAB clock format
[year month day hour minute seconds]

FrameNumber Frame number relative to when the object was started

RelativeFrame Frame number relative to trigger execution

TriggerIndex Trigger the event is associated with. For example, when
the object starts, the associated trigger is 0. Upon stop, it
is equivalent to the TriggersExecuted property.

Determining the Frame Delay Duration
To illustrate, this example calculates the duration of the delay specified by
the TriggerFrameDelay property.

1 Create an image acquisition object — This example creates a video
input object for a Data Translation image acquisition device using the
default video format. To run this example on your system, use the
imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

6-26

Retrieving Timing Information

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a trigger frame
delay large enough to produce a noticeable duration.

set(vid,'TriggerFrameDelay',50)

3 Start the image acquisition object — Call the start function to start
the image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but data logging does not begin until the trigger frame delay expires. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — Call the getdata
function to bring frames into the workspace. Specify a return value to
accept the timing information returned by getdata.

[data time] = getdata(vid);

The variable time is a vector that contains the time each frame was logged,
measured in seconds, relative to the execution of the first trigger. Check
the first value in the time vector. It should reflect the duration of the delay
before data logging started.

time

time =

4.9987
5.1587
5.3188
5.4465
5.6065
5.7665
5.8945
6.0544
6.2143
6.3424

6-27

6 Working with Acquired Image Data

5 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

6-28

7

Using Events and Callbacks

7 Using Events and Callbacks

Using Events and Callbacks
You can enhance the power and flexibility of your image acquisition
application by using event callbacks. An event is a specific occurrence that
can happen while an image acquisition object is running. The toolbox defines
a set of events that include starting, stopping, or acquiring frames of data.

When a particular event occurs, the toolbox can execute a function that you
specify. This is called a callback. Certain events can result in one or more
callbacks. You can use callbacks to perform processing tasks while your image
acquisition object continues running. For example, you can display a message,
analyze data, or perform other tasks. The start and stop callbacks, however,
execute synchronously; the object does not perform any further processing
until the callback function finishes.

Callbacks are controlled through video input object properties. Each event
type has an associated property. You specify the function that you want
executed as the value of the property.

The following topics describe using events and callbacks.

• “Using the Default Callback Function” on page 7-3

• “Event Types” on page 7-5

• “Retrieving Event Information” on page 7-8

• “Creating and Executing Callback Functions” on page 7-13

7-2

Using the Default Callback Function

Using the Default Callback Function
To illustrate how to use callbacks, this section presents a simple example that
creates an image acquisition object and associates a callback function with
the start event, trigger event, and stop event. For information about all the
event callbacks supported by the toolbox, see “Event Types” on page 7-5.

The example uses the default callback function provided with the toolbox,
imaqcallback. The default callback function displays the name of the object
along with information about the type of event that occurred and when it
occurred. To learn how to create your own callback functions, see “Creating
and Executing Callback Functions” on page 7-13.

This example illustrates how to use the default callback function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure properties— Set the values of three callback properties. The
example uses the default callback function imaqcallback.

set(vid,'StartFcn',@imaqcallback)
set(vid,'TriggerFcn',@imaqcallback)
set(vid,'StopFcn',@imaqcallback)

For this example, specify the amount of data to log.

set(vid, 'FramesPerTrigger',100);

3 Start the image acquisition object— Start the image acquisition object.
The object executes an immediate trigger, acquires 100 frames of data, and
then stops. With the three callback functions enabled, the object outputs
information about each event as it occurs.

start(vid)

Start event occurred at 14:38:46 for video input object: M_RS170-matrox-1.

7-3

7 Using Events and Callbacks

Trigger event occurred at 14:38:46 for video input object: M_RS170-matrox-1.

Stop event occurred at 14:38:49 for video input object: M_RS170-matrox-1.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-4

Event Types

Event Types
The Image Acquisition Toolbox software supports several different types of
events. Each event type has an associated video input object property that
you can use to specify the function that executes when the event occurs.

This table lists the supported event types, the name of the video input object
property associated with the event, and a brief description of the event.
For detailed information about these callback properties, see the property
reference list in “Image Acquisition Toolbox Properties” on page 4-31.

The toolbox generates a specific set of information for each event and stores
it in an event structure. To learn more about the contents of these event
structures and how to retrieve this information, see “Retrieving Event
Information” on page 7-8.

Note Callbacks, including ErrorFcn, are executed only when the video
object is in a running state. If you need to use the ErrorFcn callback for
error handling during previewing, you must start the video object before
previewing. To do that without logging data, use a manual trigger.

Events and Callback Function Properties

Event Callback Property Description

Error ErrorFcn The toolbox generates an error event when a
run-time error occurs, such as a hardware error
or timeout. Run-time errors do not include
configuration errors such as setting an invalid
property value.

When an error event occurs, the toolbox executes
the function specified by the ErrorFcn property.
By default, the toolbox executes the default
callback function for this event, imaqcallback,

7-5

7 Using Events and Callbacks

Events and Callback Function Properties (Continued)

Event Callback Property Description

which displays the error message at the MATLAB
command line.

Frames
Acquired

FramesAcquiredFcn The toolbox generates a frames acquired event when
a specified number of frames have been acquired.
You use the FramesAcquiredFcnCount property to
specify this number.

When a frames acquired event occurs, the
toolbox executes the function specified by the
FramesAcquiredFcn property.

Start StartFcn The toolbox generates a start event when an object
is started. You use the start function to start an
object.

When a start event occurs, the toolbox executes the
function specified by the StartFcn property.

Note The StartFcn callback executes
synchronously. If you specify a StartFcn callback
function, the toolbox waits for the function to finish
executing before performing any other processing.
If an error occurs in the start callback function, the
object never starts.

7-6

Event Types

Events and Callback Function Properties (Continued)

Event Callback Property Description

Stop StopFcn The toolbox generates a stop event when the object
stops running. An object stops running when the
stop function is called, the specified number of
frames is acquired, or a run-time error occurs.

When a stop event occurs, the toolbox executes the
function specified by the StopFcn property.

Note The StopFcn callback executes synchronously.
If you specify a StopFcn callback function, the
toolbox waits for the function to finish executing
before performing any other processing.

Timer TimerFcn The toolbox generates a timer event when a specified
amount of time expires. Time is measured relative
to when the object starts running. You use the
TimerPeriod property to specify the amount of time.

Note Some timer events might not execute if your
system is significantly slowed or if the TimerPeriod
is set too small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Trigger TriggerFcn The toolbox generates a trigger event when a
trigger executes. The video input object executes
immediate triggers. You execute manual triggers by
calling the trigger function. The image acquisition
device executes hardware triggers when a specified
condition is met.

When a trigger event occurs, the toolbox executes
the function specified by the TriggerFcn property.

7-7

7 Using Events and Callbacks

Retrieving Event Information

In this section...

“Introduction” on page 7-8

“Event Structures” on page 7-8

“Accessing Data in the Event Log” on page 7-10

Introduction
Each event has associated with it a set of information, generated by the
toolbox and stored in an event structure. This information includes the event
type, the time the event occurred, and other event-specific information. While
a video input object is running, the toolbox records event information in the
object’s EventLog property. You can also access the event structure associated
with an event in a callback function.

This section

• Defines the information in an event structure for all event types

• Describes how to retrieve information from the EventLog property

For information about accessing event information in a callback function, see
“Creating and Executing Callback Functions” on page 7-13.

Event Structures
An event structure contains two fields: Type and Data. For example, this is
an event structure for a trigger event:

Type: 'Trigger'
Data: [1x1 struct]

The Type field is a text string that specifies the event type. For a trigger
event, this field contains the text string 'Trigger'.

The Data field is a structure that contains information about the event.
The composition of this structure varies depending on which type of event

7-8

Retrieving Event Information

occurred. For information about the information associated with specific
events, see the following sections:

• “Data Fields for Start, Stop, Frames Acquired, and Trigger Events” on
page 7-9

• “Data Fields for Error Events” on page 7-9

• “Data Fields for Timer Events” on page 7-10

Data Fields for Start, Stop, Frames Acquired, and Trigger
Events
For start, stop, frames acquired, and trigger events, the Data structure
contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned
inMATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use

FrameNumber Frame number relative to when the object was started

RelativeFrame Frame number relative to the execution of a trigger

TriggerIndex Trigger the event is associated with. For example,
upon start, the associated trigger is 0. Upon stop, it is
equivalent to the TriggersExecuted property.

Data Fields for Error Events
For error events, the Data structure contains these fields.

7-9

7 Using Events and Callbacks

Field Name Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use

Message Text message associated with the error

MessageID MATLAB message identifier associated with the error

Data Fields for Timer Events
For timer events, the Data structure contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned in MATLAB
clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage. You can
specify this value using the imaqmem function.

FrameMemoryUsed Amount of frame memory that is currently in use

Accessing Data in the Event Log
While a video input object is running, the toolbox stores event information in
the object’s EventLog property. The value of this property is an array of event
structures. Each structure represents one event. For detailed information
about the composition of an event structure for each type of event, see “Event
Structures” on page 7-8.

7-10

Retrieving Event Information

The toolbox adds event structures to the EventLog array in the order in which
the events occur. The first event structure reflects the first event recorded,
the second event structure reflects the second event recorded, and so on.

Note Only start, stop, error, and trigger events are recorded in the EventLog
property. Frames-acquired events and timer events are not included in the
EventLog. Event structures for these events (and all the other events) are
available to callback functions. For more information, see “Creating and
Executing Callback Functions” on page 7-13.

To illustrate the event log, this example creates a video input object, runs it,
and then examines the object’s EventLog property:

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Start the image acquisition object— Start the image acquisition object.
By default, the object executes an immediate trigger, acquires 10 frames of
data, and then stops.

start(vid)

3 View the event log — Access the EventLog property of the video input
object. The execution of the video input object generated three events:
start, trigger, and stop. Thus the value of the EventLog property is a 1x3
array of event structures.

events = vid.EventLog
events =

1x3 struct array with fields:
Type
Data

7-11

7 Using Events and Callbacks

To list the events that are recorded in the EventLog property, examine the
contents of the Type field.

{events.Type}
ans =

'Start' 'Trigger' 'Stop'

To get information about a particular event, access the Data field in that
event structure. The example retrieves information about the trigger event.

trigdata = events(2).Data

trigdata =

AbsTime: [2004 12 29 16 40 52.5990]
FrameMemoryLimit: 139427840
FrameMemoryUsed: 0

FrameNumber: 0
RelativeFrame: 0
TriggerIndex: 1

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-12

Creating and Executing Callback Functions

Creating and Executing Callback Functions

In this section...

“Introduction” on page 7-13

“Creating Callback Functions” on page 7-13

“Specifying Callback Functions” on page 7-15

“Viewing a Sample Frame” on page 7-17

“Monitoring Memory Usage” on page 7-18

Introduction
The power of using event callbacks is the processing that you can perform in
response to events. You decide which events you want to associate callbacks
with and the functions these callbacks execute.

This section

• Describes how to create a callback function

• Describes how to specify the function as the value of a callback property

• Provides two examples of using event callbacks:

- Shows how to use callbacks to view a sample frame from the frames
being acquired

- Uses callback to implement a simple memory monitoring function

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Creating Callback Functions
This section explains how to create callback functions for the TimerFcn,
FramesAcquiredFcn, StartFcn, StopFcn, TriggerFcn, and ErrorFcn
callbacks.

7-13

7 Using Events and Callbacks

Callback functions require at least two input arguments:

• The image acquisition object

• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the image acquisition object itself. Because the
object is available, you can use in your callback function any of the toolbox
functions, such as getdata, that require the object as an argument. You
can also access all object properties.

The second argument, event, is the event structure associated with the event.
This event information pertains only to the event that caused the callback
function to execute. For a complete list of supported event types and their
associated event structures, see “Event Structures” on page 7-8.

In addition to these two required input arguments, you can also specify
additional, application-specific arguments for your callback function.

Note To receive the object and event arguments, and any additional
arguments, you must use a cell array when specifying the name of the
function as the value of a callback property. For more information, see
“Specifying Callback Functions” on page 7-15.

Writing a Callback Function
To illustrate, this example implements a callback function for a
frames-acquired event. This callback function enables you to monitor the
frames being acquired by viewing a sample frame periodically.

To implement this function, the callback function acquires a single frame
of data and displays the acquired frame in a MATLAB figure window. The
function also accesses the event structure passed as an argument to display
the timestamp of the frame being displayed. The drawnow command in the
callback function forces MATLAB to update the display.

7-14

Creating and Executing Callback Functions

function display_frame(obj,event)

sample_frame = peekdata(obj,1);

imagesc(sample_frame);

drawnow; % force an update of the figure window

abstime = event.Data.AbsTime;

t = fix(abstime);

sprintf('%s %d:%d:%d','timestamp', t(4),t(5),t(6))

To see how this function can be used as a callback, see “Viewing a Sample
Frame” on page 7-17.

Specifying Callback Functions
You associate a callback function with a specific event by setting the value
of the event’s callback property. The video input object supports callback
properties for all types of events.

You can specify the callback function as the value of the property in any of
three ways:

• Text string

• Cell array

• Function handle

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function,
you must specify the function as a cell array or as a function handle.

7-15

7 Using Events and Callbacks

Using a Text String to Specify Callback Functions
You can specify the callback function as a string. For example, this code
specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions
You can specify the callback function as a text string inside a cell array.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in
the cell array.

time = datestr(now,0);
vid.StartFcn = {'mycallback',time};

The first two arguments passed to the callback function are still the video
input object (obj) and the event structure (event). Additional arguments
follow these two arguments.

Using Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the
parameters as elements in the cell array.

time = datestr(now,0);
vid.StartFcn = {@mycallback,time};

7-16

Creating and Executing Callback Functions

If you are executing a local callback function from within a MATLAB file, you
must specify the callback as a function handle.

Specifying a Toolbox Function as a Callback
In addition to specifying callback functions of your own creation, you can
also specify the start, stop, or trigger toolbox functions as callbacks.
For example, this code sets the value of the stop event callback to Image
Acquisition Toolbox start function.

vid.StopFcn = @start;

Disabling Callbacks
If an error occurs in the execution of the callback function, the toolbox disables
the callback and displays a message similar to the following.

start(vid)
??? Error using ==> frames_cb
Too many input arguments.

Warning: The FramesAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property
associated with the callback or restart the object.

Viewing a Sample Frame
This example creates a video input object and sets the frames acquired event
callback function property to the display_frame function, created in “Writing
a Callback Function” on page 7-14.

The example sets the TriggerRepeat property of the object to 4 so that 50
frames are acquired. When run, the example displays a sample frame from
the acquired data every time five frames have been acquired.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

7-17

7 Using Events and Callbacks

vid = videoinput('matrox', 1);

2 Configure property values— This example sets the FramesPerTrigger
value to 30 and the TriggerRepeat property to 4. The example also
specifies as the value of the FramesAcquiredFcn callback the event callback
function display_frame, created in “Writing a Callback Function” on page
7-14. The object will execute the FramesAcquiredFcn every five frames, as
specified by the value of the FramesAcquiredFcnCount property.

set(vid,'FramesPerTrigger', 30);
set(vid,'TriggerRepeat', 4);
set(vid,'FramesAcquiredFcnCount', 5);
set(vid,'FramesAcquiredFcn', {'display_frame'});

3 Acquire data— Start the video input object. Every time five frames are
acquired, the object executes the display_frame callback function. This
callback function displays the most recently acquired frame logged to the
memory buffer.

start(vid)

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

Monitoring Memory Usage
This example creates a callback function for a timer event that displays the
toolbox’s current memory usage and stops the acquisition when the available
memory for frame storage falls below a specified amount.

Creating the Memory Monitor Callback Function
This callback function implements a simple memory usage monitoring
function. The callback function uses the imaqmem function to retrieve two
memory usage statistics, FrameMemoryLimit and FrameMemoryUsed, and then
calculates the amount of memory that is currently left for allocating frames.
When the amount of memory available falls below a specified value, the
function outputs a message and stops the object.

7-18

Creating and Executing Callback Functions

function mem_mon(obj,event)

out = imaqmem;

mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

msg = 'Memory left for frames';
msg2 = 'Memory load';
low_limit = 2000000;

if(mem_left > low_limit)
sprintf('%s: %d \n%s: %d',msg, mem_left,msg2, out.MemoryLoad)

else
disp('Memory available for frames getting low.');
disp('Stopping acquisition.')
stop(obj);

end

Running the Example
The example acquires frames until the amount of memory left for frame
storage reaches a lower limit specified in the callback function.

1 Create an image acquisition object — This example creates a video
input object for a Matrox image acquisition device. To run this example on
your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('matrox',1);

2 Configure property values — This example sets up a continuous
acquisition by setting the FramesPerTrigger value to Inf. The example
also specifies the timer event callback function mem_mon, created in
“Creating the Memory Monitor Callback Function” on page 7-18, as the
value of the TimerFcn callback. The object will execute the TimerFcn every
five seconds, as specified by the value of the TimerPeriod property.

set(vid,'FramesPerTrigger',Inf);
set(vid,'TimerPeriod',5);
set(vid,'TimerFcn',{'mem_mon'});

7-19

7 Using Events and Callbacks

3 Acquire data— Start the video input object. Every 5 seconds, the object
executes the callback function associated with the timer event. This
function outputs the current memory available for frame storage and the
memory load statistic. When the amount of memory reaches the specified
lower limit, the callback function stops the acquisition.

start(vid)
ans =

ans =

Memory left for frames: 27791360
Memory load: 88

ans =

Memory left for frames: 26316800
Memory load: 88

ans =

Memory left for frames: 24842240
Memory load: 89

.

.

.

Memory left for frames: 2969600
Memory load: 97

Memory available for frames getting low.
Stopping acquisition.

4 Clean up— Always remove image acquisition objects from memory, and
the variables that reference them, when you no longer need them.

delete(vid)
clear vid

7-20

8

Using the From Video
Device Block in Simulink

The Image Acquisition Toolbox software includes a block that can be used in
Simulink to bring live video data into models.

• “Simulink Image Acquisition Overview” on page 8-2

• “Opening the Image Acquisition Toolbox Block Library” on page 8-3

• “Using Code Generation” on page 8-5

• “Saving Video Data to a File” on page 8-6

8 Using the From Video Device Block in Simulink®

Simulink Image Acquisition Overview
The Image Acquisition Toolbox software includes a block that can be used in
Simulink to bring live video data into models.

The topics in this section describe how to use the Image Acquisition Toolbox
block library. The toolbox block library contains one block called the From
Video Device block. You can use this block to acquire live video data in a
Simulink model. You can connect this block with blocks in other Simulink
libraries to create sophisticated models.

Use of the Image Acquisition Toolbox From Video Device block requires
Simulink, a tool for simulating dynamic systems. If you are new to Simulink,
read the Getting Started section of the Simulink documentation to better
understand its functionality.

For full details about the block in the Image Acquisition Toolbox software, see
the reference page for the From Video Device block.

8-2

Opening the Image Acquisition Toolbox Block Library

Opening the Image Acquisition Toolbox Block Library

In this section...

“Using the imaqlib Command” on page 8-3

“Using the Simulink Library Browser” on page 8-4

Using the imaqlib Command
To open the Image Acquisition Toolbox block library, enter

imaqlib

at the MATLAB prompt. MATLAB displays the contents of the library in a
separate window.

8-3

8 Using the From Video Device Block in Simulink®

Using the Simulink Library Browser
To open the Image Acquisition Toolbox block library, start the Simulink
Library Browser and select the library from the list of available block libraries.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the browser window. The left
pane lists available block libraries in alphabetical order. To open the Image
Acquisition Toolbox block library, click its icon.

8-4

Using Code Generation

Using Code Generation
The From Video Device block supports the use of code generation. You can
generate code from the block. This enables models containing the From Video
Device block to run successfully in Accelerator, Rapid Accelerator, External,
and Deployed modes.

Here is a typical workflow for code generation.

1 Develop a model using the From Video Device block and blocks from the
Computer Vision System Toolbox™.

2 Run the simulation to verify that your device is working.

3 Build the model to generate code and create the executable.

The deployed application can then be used on a machine that does not have
MATLAB and Simulink.

The block supports use of the packNGo function from Simulink Coder™.
Source-specific properties for your device are honored when code is generated.
The generated code compiles with both C and C++ compilers.

For more information, see “Code Generation” on page 16-3 on the block
reference page.

8-5

8 Using the From Video Device Block in Simulink®

Saving Video Data to a File

In this section...

“Introduction” on page 8-6

“Step 1: Open the Image Acquisition Toolbox Library” on page 8-6

“Step 2: Open a Model or Create a New Model” on page 8-7

“Step 3: Drag the From Video Device Block into the Model” on page 8-8

“Step 4: Drag Other Blocks to Complete the Model” on page 8-9

“Step 5: Connect the Blocks” on page 8-10

“Step 6: Specify From Video Device Block Parameter Values” on page 8-11

“Step 7: Run the Simulation” on page 8-13

Introduction
The best way to learn about the From Video Device block is to see an example.
This section provides a step-by-step example that builds a simple model using
the block in conjunction with blocks from other blockset libraries.

Step 1: Open the Image Acquisition Toolbox Library
To use the From Video Device block, you must open the Image Acquisition
Toolbox block library. To open it, start the Simulink Library Browser and
select the Image Acquisition Toolbox entry from the list.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. (For more information about opening the library, see
“Opening the Image Acquisition Toolbox Block Library” on page 8-3.)

8-6

Saving Video Data to a File

Step 2: Open a Model or Create a New Model
To use a block, you must add it to an existing model or create a new model.

To create a new model, click the New model button on the Simulink Library
Browser toolbar. Simulink opens an empty model. To assign the new model a
name, use the Save option.

8-7

8 Using the From Video Device Block in Simulink®

Step 3: Drag the From Video Device Block into the
Model
To use the From Video Device block in a model, click the block in the library
and, holding the mouse button down, drag it into the Simulink Editor.
Note how the name on the block changes to reflect the device connected to
your system that is associated with the block. If you have multiple devices
connected, you can choose the device to use in the Source Block Parameters
dialog box by double-clicking the block.

Drag From Video Device Block into Model8-8

Saving Video Data to a File

Step 4: Drag Other Blocks to Complete the Model
To illustrate using the block, this example creates a simple model that
acquires data and then outputs the data to a file in Audio Video Interleave
(AVI) format. To create this model, this example uses a block from Computer
Vision System Toolbox.

Open the Computer Vision System Toolbox library. In the library window,
open the Sinks subsystem. From this subsystem, click the To Multimedia
File block in the library and, holding the mouse button down, drag the block
into the Simulink Editor.

8-9

8 Using the From Video Device Block in Simulink®

Drag Output Block to Model

Step 5: Connect the Blocks
Connect the three outputs from the From Video Device block to the three
corresponding inputs on the To Multimedia File block. If the ports are not
displayed, you can choose the option to display them in the Source Block
Parameters dialog box by double-clicking the block. One quick way to make

8-10

Saving Video Data to a File

all three connections at once is to select the From Video Device block, press
and hold the Ctrl key, and then click the To Multimedia File block.

Note that your camera might have output ports that are Y, Cb, Cr and
the input ports on the To Multimedia File block are R, G, B. Some devices
designate color band by YCbCr and some devices designate it by RGB. Both
are valid and will work together.

Connect the From Video Device Block to the To Multimedia File Block

Step 6: Specify From Video Device Block Parameter
Values
To check From Video Device block parameter settings, double-click the block’s
icon in the Simulink Editor. This opens the Source Block Parameters dialog

8-11

8 Using the From Video Device Block in Simulink®

box for the From Video Device block, shown in the following figure. Use the
various fields in the dialog box to determine the current values of From Video
Device block parameters or change the values.

For example, using this dialog box, you can specify the device you want to use,
select the video format you want to use with the device, or specify the block
sample time. For more details, see the From Video Device block reference
page.

You can set parameters for any of the blocks you include in your model. For
example, to specify the name of the AVI file, double-click the To Multimedia
File block. Make sure that you have write permission to the directory into
which the block writes the AVI file.

8-12

Saving Video Data to a File

Step 7: Run the Simulation
To run the simulation, click the green Run button on the Simulink Editor
toolbar. You can use toolbar options to specify how long to run the simulation
and to stop it. You can also start the simulation by selecting Simulation
> Run.

While the simulation is running, the status bar at the bottom of the Simulink
Editor indicates the progress of the simulation. After the simulation finishes,
check the directory in which you ran the simulation to verify that an AVI
file was created.

8-13

8 Using the From Video Device Block in Simulink®

8-14

9

Configuring GigE Vision
Devices

• “Types of Setups” on page 9-2

• “Network Hardware Configuration Notes” on page 9-3

• “Network Adaptor Configuration Notes” on page 9-4

• “Software Configuration” on page 9-12

• “Setting Preferences” on page 9-14

• “Troubleshooting” on page 9-17

9 Configuring GigE Vision Devices

Types of Setups
The Image Acquisition Toolbox software supports GigE Vision devices. The
following sections describe information on installing and configuring the
devices to work with the Image Acquisition Toolbox software. Separate
troubleshooting information is found in “Troubleshooting GigE Vision Devices
on Windows” on page 13-26.

Note Not all cameras that use Ethernet are GigE Vision. A camera must
have the GigE Vision logo appearing on it or its data sheet to be a GigE
Vision device.

There are five different setups you can use for GigE Vision cameras.

• Direct to a PC not on a network — PC is connected to camera with a Cat
5e or 6 Ethernet cable. PC is not on a network. This is one of the setups
that offers the best acquisition speed.

• Direct to a PC on a network, using two Ethernet cards — PC is connected
to camera with a Cat 5e or 6 Ethernet cable. PC is connected to a network.
This is one of the setups that offers the best acquisition speed.

• Indirect to a PC on a network, with PC and camera on same subnet — PC
is connected to a network with a Cat 5e or 6 Ethernet cable. Camera is
connected to the same network with a Cat 5e or 6 Ethernet cable. You may
connect multiple cameras to the network using separate cables.

• Multiple cameras to a PC directly, using multiple Ethernet cards — PC is
connected to camera 1 with a Cat 5e or 6 Ethernet cable. PC is connected
to camera 2 with a separate Cat 5e or 6 Ethernet cable. PC is optionally
connected to a network. This is one of the setups that offers the best
acquisition speed.

• Multiple cameras to a PC directly, using switch or hub — PC is connected
to a switch or hub directly with a Cat 5e or 6 Ethernet cable. Camera 1 is
connected to switch/hub with a Cat 5e or 6 Ethernet cable. Camera 2 is
connected to the switch/hub with a separate Cat 5e or 6 Ethernet cable. PC
is optionally connected to a network. Alternatively, switch/hub is optionally
connected to a network.

9-2

Network Hardware Configuration Notes

Network Hardware Configuration Notes
The following notes apply to network connections and hardware.

Using the same network as the PC on a shared network connection — Plug
the camera into the network that the PC is plugged into. They must be on the
same subnet. A system administrator can configure a VLAN if necessary.

Using a private network connection — You can connect the camera through
the main/only Ethernet card, or through a second Ethernet card. In either
scenario, a switch can be used to connect multiple cameras.

Ethernet cards — Ethernet cards must be 1000 Mbps. If direct connection or
PC network allows, use a card that supports jumbo frames for larger packet
sizes. Also, on Windows, increase the number of receive buffers if reception
is poor.

Switches for connecting multiple cameras — Use a switch that has full duplex
1000 Gbps per port capacity. It can be a managed switch, but does not have
to be.

9-3

9 Configuring GigE Vision Devices

Network Adaptor Configuration Notes

In this section...

“Windows Configuration” on page 9-4

“Linux Configuration” on page 9-6

“Mac Configuration” on page 9-7

Windows Configuration
Important Note: When you install your vendor software that came with your
device, do not install your vendor’s filtering or performance networking driver.

Let Windows automatically determine the IP if you are using a single direct
connection to the PC, instead of attempting to use static IP. Otherwise, leave
organizational IP configuration settings in place.

Use your vendor software to configure the camera for DHCP/LLA.

If you have multiple cameras connected to multiple Ethernet cards, you
cannot have them all set to automatic IP configuration. You must specify the
IP address for each card and each card must be on a different subnet.

Enable large frame support if your Ethernet card, and switch if present,
supports it and you are using a direct connection. If you are not using a direct
connection, you can enable large frame support if all switches and routers in
your organization’s network support it.

Set the Receive Buffers high, 2048 for example.

Installation of GigE Vision Cameras and Drivers on Windows
Follow these steps to install a GigE Vision camera on a Windows machine.

1 It is not necessary to install your vendor software that came with your
device, but you may want to in order to verify that the device is running
outside of MATLAB.

9-4

Network Adaptor Configuration Notes

Important Note: Do not install your vendor’s filtering or performance
networking driver.

2 In the Windows Network Connections dialog box (part of Control Panel), if
using a second network adaptor, you can optionally rename your second
network adaptor to “GigE Vision” to help distinguish it from your primary
adaptor.

If the Status column says “Limited or no connectivity,” it will not impact
your camera, as that status applies to the Internet.

3 Open the Properties dialog box of the Ethernet card by double-clicking
it in Network Connections. If you are using a separate Ethernet card
for the GigE camera, make sure that in the This connection uses the
following items section on the General tab you have nothing selected
except for Internet Protocol (TCP/IP). Be sure to use TCP/IP version
4, and not version 6.

Make sure that any vendor drivers are unchecked and that anti-virus
program drivers are unchecked. If you cannot uncheck the anti-virus
software from the adaptor due to organization restrictions, you may need
to purchase a second gigabit Ethernet card. In this case, leave all of the
options as is for the network card for your PC, and configure the second
card as described here, which will only connect to your camera.

4 In Windows Device Manager, make sure your network cards show up as
using the correct network card vendor driver.

For example, in the Device Manager window, under Network adapters,
you should see Intel PRO/1000 PT Desktop Adapter if you use that
particular Ethernet card.

Check your adaptor properties. If your situation allows, as described in the
next section, make sure that Jumbo Frames is enabled in the Settings
on the Advanced tab. Make sure that Receive Descriptors is enabled
in the Settings > Performance Options on the Advanced tab. Make
sure that the correct adaptor is listed in the Driver tab and that it has
not been replaced with a vendor-specific driver instead of the driver of
the Ethernet card.

9-5

9 Configuring GigE Vision Devices

Note You do not need to install GenICam™ to use the GigE adaptor, because
it is now included in the installation of the toolbox. However, if you are using
the From Video Device block and doing code generation, you would need to
install GenICam to run the generated application outside of MATLAB.

Linux Configuration
You will not need any drivers from your vendor and we recommend that you
do not install any that may have come with your device.

We recommend that you have your system administrator help with the
following setup tasks:

• Getting the Ethernet card recognized by the kernel.

9-6

Network Adaptor Configuration Notes

• Getting the IP and MTU configuration set up for direct connection.

For dynamic IP configuration of a camera and Ethernet card not connected
to an organizational network, avahi-autoipd can be used. However, we
recommend that each direct connection to a camera have an interface with
a static IP such as 10.10.x.y or 192.168.x.y.

If you want to use jumbo frames and your Ethernet card and switches (if
present) allow, configure the MTU accordingly.

Mac Configuration
You will not need any drivers from your vendor and we recommend that you
do not install any that may have come with your device.

You should configure your Ethernet connection as shown:

9-7

9 Configuring GigE Vision Devices

In the configuration shown here, the Mac Pro has two Ethernet connections,
one to an internal network, and one for GigE Vision. The GigE Vision
connection is set to use DHCP.

Advanced settings are set as shown in the following diagrams.

9-8

Network Adaptor Configuration Notes

The TCP/IP tab.

9-9

9 Configuring GigE Vision Devices

The DNS tab.

9-10

Network Adaptor Configuration Notes

The Ethernet tab.

If you are using a MacBook, you may not have the option of Jumbo frames
in the MTU.

9-11

9 Configuring GigE Vision Devices

Software Configuration
You need to have GenICam installed, but that is done for you by the
Image Acquisition Toolbox. The necessary environment variables should
automatically be set as part of the installation. You can optionally check to
verify the following environment variables. See the examples below.

Note If you have a camera that requires a GenICam XML file on a local
drive (most cameras do not), you should set MWIMAQ_GENICAM_XML_FILES
environment variable to the directory of your choice, and then install the
camera’s XML file in that directory. However, most cameras do not require
or use local XML files.

Windows Example

MWIMAQ_GENICAM_XML_FILES=C:\cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

and by looking at the relevant sections of the output when you run the
imaqsupport function.

Linux Example

MWIMAQ_GENICAM_XML_FILES=/local/cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

Mac Example

MWIMAQ_GENICAM_XML_FILES=/local/cameraXML

You can test the installation by using the following command:

imaqhwinfo('gige')

9-12

Software Configuration

and by looking at the relevant sections of the output when you run the
imaqsupport function.

Note You do not need to install GenICam to use the GigE adaptor, because it
is now included in the installation of the toolbox. However, if you are using
the From Video Device block and doing code generation, you would need to
install GenICam to run the generated application outside of MATLAB.

9-13

9 Configuring GigE Vision Devices

Setting Preferences
There are three GigE Vision related preferences in the Image Acquisition
Preferences. In MATLAB, on the Home tab, in the Environment section,
click Preferences > Image Acquisition.

9-14

Setting Preferences

Timeout for packet acknowledgement – this is a timeout value for the
time between the sending of a command (for camera discovery or control) and
the time that the acknowledgement is received from the camera.

9-15

9 Configuring GigE Vision Devices

Timeout for heartbeat – the camera requires that the application send
a packet every so often (like a heartbeat) to keep the control connection
alive. This is the setting for that packet period. Setting it too low can add
unnecessary load to the computer and to the camera. Setting it too high
can cause the camera to remain in use too long beyond when the toolbox
attempts to relinquish control, leading to a failure to obtain control to start
another acquisition.

Retries for commands – this is the number of attempts that the toolbox
will make to send a command to the camera before deciding that the send
has failed. The time between retries is set by the Timeout for packet
acknowledgement setting.

Disable camera IP correction – check if you want to disable automatic IP
correction for your camera. Clear the check mark to re-enable IP correction.

9-16

Troubleshooting

Troubleshooting
For troubleshooting information for GigE Vision devices on Windows, see
“Troubleshooting GigE Vision Devices on Windows” on page 13-26.

For troubleshooting information for GigE Vision devices on Linux®, see
“Troubleshooting GigE Vision Devices on Linux” on page 13-29.

For troubleshooting information for GigE Vision devices on Mac, see
“Troubleshooting GigE Vision Devices on Mac” on page 13-31.

9-17

9 Configuring GigE Vision Devices

9-18

10

Using the Kinect for
Windows Adaptor

• “Important Information About the Kinect Adaptor” on page 10-2

• “Data Streams Returned by the Kinect” on page 10-4

• “Detecting the Kinect Devices” on page 10-8

• “Acquiring Image and Skeletal Data Using Kinect” on page 10-10

• “Acquiring from Color and Depth Devices Simultaneously” on page 10-26

• “Using Skeleton Viewer for Kinect Skeletal Data” on page 10-28

• “Installing the Kinect for Windows Runtime” on page 10-31

• “Support Packages and Support Package Installer” on page 10-37

• “Install This Support Package on Other Computers” on page 10-39

• “Open Examples for This Support Package” on page 10-41

10 Using the Kinect for Windows Adaptor

Important Information About the Kinect Adaptor
The Kinect Adaptor lets you acquire images using a Kinect® for Windows
device. Kinects are often used in automotive IVS, robotics, human-computer
interaction (HCI), security systems, entertainment systems, game design, and
civil engineering. They can be used for analyzing skeletons, 3D mapping,
gesture recognition, human travel patterns, sports and games, etc.

The Kinect adaptor is supported on 32-bit and 64-bit Windows.

Doing image acquisition with a Kinect for Windows camera is similar to using
other cameras and adaptors, but with several key differences:

• The Kinect for Windows device has two separate physical sensors, and each
one uses a different DeviceID in the videoinput object. The Kinect color
sensor returns color image data. The Kinect depth sensor returns depth
and skeletal data. For information about Kinect device discovery and the
use of two device IDs, see “Detecting the Kinect Devices” on page 10-8.

• The Kinect for Windows device returns four data streams. The image
stream is returned by the color sensor and contains color data in various
color formats. The depth stream is returned by the depth sensor and
returns depth information in pixels. The skeletal stream is returned by the
depth sensor and returns metadata about the skeletons. There is also an
audio stream, but this is unused by Image Acquisition Toolbox. For details
on the streams, see “Data Streams Returned by the Kinect” on page 10-4.

• The Kinect for Windows can track up to six people. It can provide full
tracking on two people, and position tracking on up to four more.

• In Image Acquisition Toolbox, skeletal metadata is accessed through the
depth sensor object. For an example showing how to access the skeletal
metadata, see “Acquiring Image and Skeletal Data Using Kinect” on page
10-10.

Note The Kinect adaptor is intended for use only with the Kinect for
Windows sensor.

10-2

Important Information About the Kinect Adaptor

Note In order to use the Kinect for Windows support in the Image Acquisition
Toolbox, you must have version 1.6 or later of the Kinect for Windows Runtime
installed on your system. If you already have it installed, you do not need to do
anything more. If you do not have it installed, you need to install it following
the procedure in “Installing the Kinect for Windows Runtime” on page 10-31.

10-3

10 Using the Kinect for Windows Adaptor

Data Streams Returned by the Kinect
The Kinect for Windows device returns these data streams.

• Image stream (returned by the color sensor)

• Depth stream (returned by the depth sensor)

• Skeletal stream (returned by the depth sensor)

• Audio stream (not used by the Image Acquisition Toolbox, but could be
used with MATLAB audiorecorder)

Image Stream

The image stream returns color image data and other formats using the
Kinect color sensor. It supports the following formats.

Format Description

RawYUV_640x480 Raw YUV format. Resolution of
640 x 480, frame rate of 15 frames
per second, which is the maximum
allowed.

RGB_1280x960 RGB format. Resolution of 1280 x
960, frame rate of 12 frames per
second, which is the maximum
allowed.

RGB_640x480 RGB format. Resolution of 640 x 480,
frame rate of 30 frames per second,
which is the maximum allowed.

YUV_640x480 YUV format. Resolution of 640 x 480,
frame rate of 15 frames per second,
which is the maximum allowed.

10-4

Data Streams Returned by the Kinect

Format Description

Infrared_640x480 Infrared format. MONO16 frame
type with resolution of 640 x 480,
frame rate of 30 frames per second,
which is the maximum allowed.

The infrared stream allows you
to capture frames in low light
situations.

RawBayer_1280x960 Raw Bayer format. MONO8 frame
type with resolution of 1280 x 960,
frame rate of 12 frames per second,
which is the maximum allowed.

This format returns the raw Bayer
pattern, so you can use your own
algorithm to reconstruct the color
image.

RawBayer_640x480 Raw Bayer format. MONO8 frame
type with resolution of 640 x 480,
frame rate of 30 frames per second,
which is the maximum allowed.

This format returns the raw Bayer
pattern, so you can use your own
algorithm to reconstruct the color
image.

Depth Stream

The depth stream returns person segmentation data using the Kinect depth
sensor. The depth map is distance in meters from the camera plane. For
Skeletal Tracking only two people can be tracked at a given time, although six
people can be segmented at a time. This means it can provide full tracking on
two skeletons, and partial position tracking on up to four more. The tracking
ranges are a default range of 50 cm to 400 cm and a near range of 40 cm to
300 cm.

The depth stream supports the following formats.

10-5

10 Using the Kinect for Windows Adaptor

Format Description

Depth_640x480 Resolution of 640 x 480, frame rate
of 30 frames per second

Depth_320x240 Resolution of 320 x 240, frame rate
of 30 frames per second

Depth_80x60 Resolution of 80 x 60, frame rate of
30 frames per second

10-6

Data Streams Returned by the Kinect

Skeletal Stream

The skeletal stream returns skeletal data using the Kinect depth device.
The skeleton frame returned contains data on the ground plane position
and a time stamp. It contains the overall position of the skeleton and the
3-D position of all 20 joints (position in meters). Two skeletons are actively
tracked, and another four are tracked passively.

Note To understand the differences in using the Kinect adaptor compared
to other toolbox adaptors, see “Important Information About the Kinect
Adaptor” on page 10-2. For information about Kinect device discovery and the
use of two device IDs, see “Detecting the Kinect Devices” on page 10-8. For
an example that shows how to access the skeletal metadata, see “Acquiring
Image and Skeletal Data Using Kinect” on page 10-10.

10-7

10 Using the Kinect for Windows Adaptor

Detecting the Kinect Devices
Typically in the Image Acquisition Toolbox, each camera or image device
has one DeviceID. Because the Kinect for Windows camera has two
separate sensors, the color sensor and the depth sensor, the toolbox lists two
DeviceIDs. If you use imaqhwinfo on the adaptor, you can see this.

info = imaqhwinfo('kinect');

info

info =

AdaptorDllName: '<matlabroot>\toolbox\imaq\imaqadaptors\win64\mwkinectimaq.dll'

AdaptorDllVersion: '4.6 (R2013b)'

AdaptorName: 'kinect'

DeviceIDs: {[1] [2]}

DeviceInfo: [1x2 struct]

You can see the two device IDs in the output.

If you look at each device, you can see that they represent the color sensor and
the depth sensor. The following shows the color sensor.

info.DeviceInfo(1)

ans =

DefaultFormat: 'RGB_640x480'

DeviceFileSupported: 0

DeviceName: 'Kinect Color Sensor'

DeviceID: 1

VideoInputConstructor: 'videoinput('kinect', 1)'

VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 1)'

SupportedFormats: {'RGB_1280x960' 'RGB_640x480' 'RawYUV_640x480' 'YUV_640x480'

'Infrared_640x480' 'RawBayer_1280x960' 'RawBayer_640x480'}

In the output, you can see that Device 1 is the color sensor.

10-8

Detecting the Kinect Devices

The following shows the depth sensor, which is Device 2.

info.DeviceInfo(2)

ans =

DefaultFormat: 'Depth_640x480'

DeviceFileSupported: 0

DeviceName: 'Kinect Depth Sensor'

DeviceID: 2

VideoInputConstructor: 'videoinput('kinect', 2)'

VideoDeviceConstructor: 'imaq.VideoDevice('kinect', 2)'

SupportedFormats: {'Depth_640x480' 'Depth_320x240' 'Depth_80x60'}

You can use multiple Kinect cameras together. Multiple Kinect sensors are
enumerated as DeviceIDs [1] [2] [3] [4] and so on. For example, if you
had two Kinect cameras, the first one would have Kinect Color Sensor with
DeviceID 1 and Kinect Depth Sensor with DeviceID 2 and the second
Kinect camera would have Kinect Color Sensor with DeviceID 3 and
Kinect Depth Sensor with DeviceID 4.

Note To understand the differences in using the Kinect adaptor compared
to other toolbox adaptors, see “Important Information About the Kinect
Adaptor” on page 10-2. For more information on the Kinect streams, see
“Data Streams Returned by the Kinect” on page 10-4. For an example that
shows how to access the skeletal metadata, see “Acquiring Image and Skeletal
Data Using Kinect” on page 10-10.

10-9

10 Using the Kinect for Windows Adaptor

Acquiring Image and Skeletal Data Using Kinect
In “Detecting the Kinect Devices” on page 10-8, you could see that the two
sensors on the Kinect for Windows are represented by two device IDs, one for
the color sensor and one of the depth sensor. In that example, Device 1 is the
color sensor and Device 2 is the depth sensor. This example shows how to
create a videoinput object for the color sensor to acquire RGB images and
then for the depth sensor to acquire skeletal data.

1 Create the videoinput object for the color sensor. DeviceID 1 is used for
the color sensor.

vid = videoinput('kinect',1,'RGB_640x480');

2 Look at the device-specific properties on the source device, which is the
color sensor on the Kinect camera.

src = getselectedsource(vid);

src

Display Summary for Video Source Object:

General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = ColorSource
Tag =
Type = videosource

Device Specific Properties:
Accelerometer = [0.0 -1.0 0.0]
AutoExposure = on
AutoWhiteBalance = on
BacklightCompensation = AverageBrightness
Brightness = 0.2156
CameraElevationAngle = 3
Contrast = 1
ExposureTime = 1.0
FrameInterval = 0

10-10

Acquiring Image and Skeletal Data Using Kinect

FrameRate = 30
Gain = 0
Gamma = 2.2
Hue = 0
PowerLineFrequency = Disabled
Saturation = 1
Sharpness = 0.5
WhiteBalance = 2700

As you can see in the output, the color sensor has a set of device-specific
properties.

Device-Specific
Property – Color
Sensor

Description

Accelerometer Returns 3D vector of acceleration data for
both the color and depth sensors. The data
is updated while the device is running or
previewing.

This 1 x 3 double represents the x, y, and
z values of acceleration in gravity units g
(9.81m/s^2). For example,

[0.06 -1.00 -0.09]

represents values of x as 0.06 g, y as -1.00
g, and z as -0.09 g.

AutoExposure Use to set the exposure automatically. This
control whether other related properties are
activated. Values are on (default) and off.

on means that exposure is set automatically,
and these properties are not able to be set
and will throw a warning: FrameInterval,
ExposureTime, and Gain.

off means that these properties are
not able to be set and will throw
a warning: PowerLineFrequency,
BacklightCompensation, and Brightness.

10-11

10 Using the Kinect for Windows Adaptor

Device-Specific
Property – Color
Sensor

Description

AutoWhiteBalance Use to enable or disable automatic white
balance setting.

on (default) means that it will automatically
configure white balance and the
WhiteBalance property cannot be set.

off means that the WhiteBalance property
is settable.

BacklightCompensation Configures backlight compensation modes
to adjust the camera to capture images
dependent on environmental conditions.

Note that this property is only valid if
AutoExposure is set to Enabled. The default
is AverageBrightness.

Values are:

AverageBrightness favors an average
brightness level

CenterPriority favors the center of the
scene

LowLightsPriority favors a low light level

CenterOnly favors the center only

Brightness Indicates the brightness level. The value
range is 0.0 to 1.0, and the default value is
0.2156.

Note that this property is only valid if
AutoExposure is set to Enabled.

10-12

Acquiring Image and Skeletal Data Using Kinect

Device-Specific
Property – Color
Sensor

Description

CameraElevationAngle Controls the angle of the sensor lens. This is
the camera angle relative to the ground. The
value must be an integer property with range
of -27 to 27 degrees. The default value is the
last set value, since this is a sticky setting.
Only set it if you want to change the angle
of the camera. This property is shared with
the depth sensor also.

Contrast Indicates contrast level. Values must be in
the range 0.5 to 2, with a default value of 1.

ExposureTime Indicates the exposure time in increments of
1/10,000 of a second. The value range is 0 to
4000, and the default is 0.

Note that this property is only valid if
AutoExposure is set to Disabled.

FrameInterval Indicates the frame interval in units of
1/10,000 of a second. The value range is 0 to
4000, and the default is 0.

Note that this property is only valid if
AutoExposure is set to Disabled.

FrameRate Frames per second for the acquisition.
This property is read only and the possible
values for the color sensor are 12, 15, and 30
(default). It reflects the actual frame rate
when running.

Gain Indicates a multiplier for the RGB color
values. The value range is 1.0 to 16.0, and
the default is 1.0.

Note that this property is only valid if
AutoExposure is set to Disabled.

10-13

10 Using the Kinect for Windows Adaptor

Device-Specific
Property – Color
Sensor

Description

Gamma Indicates gamma measurement. Values must
be in the range 1 to 2.8, with a default value
of 2.2.

Hue Indicates hue setting. Values must be in the
range -22 to 22, with a default value of 0.

PowerLineFrequency Option for reducing flicker caused by the
frequency of a power line. Values are
Disabled, FiftyHertz, and SixtyHertz.
The default is Disabled.

Note that this property is only valid if
AutoExposure is set to Enabled.

Saturation Indicates saturation level. Values must be in
the range 0 to 2, with a default value of 1.

Sharpness Indicates sharpness level. Values must be in
the range 0 to 1, with a default value of 0.5.

WhiteBalance Indicates color temperature in degrees
Kelvin. The value range is 2700 to 6500 and
the default is 2700.

Note that this property is only valid if
AutoWhiteBalance is set to Disabled.

10-14

Acquiring Image and Skeletal Data Using Kinect

3 You can optionally set some of these properties shown in the previous step.
For example, you might be acquiring images in a low light situation. You
could adjust the acquisition for this by setting the BacklightCompensation
property to LowLightsPriority, which favors a low light level.

set(src, 'BacklightCompensation' , 'LowLightsPriority');

4 Preview the color stream by calling preview on the color sensor object
created in step 1.

preview(vid);

When you are done previewing, close the preview window.

closepreview(vid);

5 Create the videoinput object for the depth sensor. Note that a second
object is created (vid2), and DeviceID 2 is used for the depth sensor.

vid2 = videoinput('kinect',2,'Depth_640x480');

6 Look at the device-specific properties on the source device, which is the
depth sensor on the Kinect.

src = getselectedsource(vid2);

src

Display Summary for Video Source Object:

General Settings:
Parent = [1x1 videoinput]
Selected = on
SourceName = DepthSource
Tag =
Type = videosource

Device Specific Properties:
Accelerometer = [0.0 -1.0 0.0]
BodyPosture = Standing
CameraElevationAngle = 4
DepthMode = Default

10-15

10 Using the Kinect for Windows Adaptor

FrameRate = 30
IREmitter = on
SkeletonsToTrack = [1x0 double]
TrackingMode = off

As you can see in the output, the depth sensor has a set of device-specific
properties associated with skeletal tracking. These properties are specific
to the depth sensor.

Device-Specific
Property – Depth
Sensor

Description

Accelerometer Returns 3D vector of acceleration data for
both the color and depth sensors. The data
is updated while the device is running or
previewing.

This 1 x 3 double represents the x, y, and
z values of acceleration in gravity units g
(9.81m/s^2). For example,

[0.06 -1.00 -0.09]

represents values of x as 0.06 g, y as -1.00
g, and z as -0.09 g.

BodyPosture Indicates whether the tracked skeletons are
standing or sitting. Values are Standing
(gives 20 point skeleton data) and Seated
(gives 10 point skeleton data, using joint
indices 2 - 11). Standing is the default.

Note that if BodyPosture is set to Seated
mode, and TrackingMode is set to Position,
no position is returned, since Position is the
location of the hip joint and the hip joint is
not tracked in Seated mode.

See the subsection “BodyPosture Joint
Indices” at the end of this example for the
list of indices of the 20 skeletal joints.

10-16

Acquiring Image and Skeletal Data Using Kinect

Device-Specific
Property – Depth
Sensor

Description

CameraElevationAngle Controls the angle of the sensor lens. This
is the camera angle relative to the ground.
The value must be an integer property with
range of -27 to 27 degrees. The default value
is the last set value, since this is a sticky
setting. Only set it if you want to change the
angle of the camera. This property is shared
with the color sensor also.

DepthMode Indicates the range of depth in the depth
map. Values are Default (range of 50 to 400
cm) and Near (range of 40 to 300 cm).

FrameRate Frames per second for the acquisition. This
property is read only and is fixed at 30 for
the depth sensor for all formats. It reflects
the actual frame rate when running.

IREmitter Controls whether the IR emitter is on or
off. Values are on and off. Initially, the
default value is on. However, this is a sticky
property, so the default value is the last set
value. If you set it to off, it will remain off
in future uses until you change the setting.

An advantage of this property is that it is
useful when using multiple Kinect devices
to avoid interference.

10-17

10 Using the Kinect for Windows Adaptor

Device-Specific
Property – Depth
Sensor

Description

SkeletonsToTrack Indicates the Skeleton Tracking ID returned
as part of the metadata. Values are:

[] Default tracking

[TrackingID1] Track 1 skeleton with
Tracking ID = TrackingID1

[TrackingID1 TrackingID2] Track 2
skeletons with Tracking IDs = TrackingID1
and TrackingID2

TrackingMode Indicates tracking state. Values are:

Skeleton tracks full skeleton with joints

Position tracks hip joint position only

Off disables skeleton position tracking
(default)

Note that if BodyPosture is set to Seated
mode, and TrackingMode is set to Position,
no position is returned, since Position is the
location of the hip joint and the hip joint is
not tracked in Seated mode.

7 Start the second videoinput object (the depth stream).

start(vid2);

8 Skeletal data is accessed as metadata on the depth stream. You can use
getdata to access it.

% Get the data on the object.
[frame, ts, metaData] = getdata(vid2);

% Look at the metadata to see the parameters in the skeletal data.
metaData

metaData =

10-18

Acquiring Image and Skeletal Data Using Kinect

10x1 struct array with fields:
AbsTime: [1x1 double]
FrameNumber: [1x1 double]
IsPositionTracked: [1x6 logical]
IsSkeletonTracked: [1x6 logical]
JointDepthIndices: [20x2x6 double]
JointImageIndices: [20x2x6 double]
JointTrackingState: [20x6 double]
JointWorldCoordinates: [20x3x6 double]
PositionDepthIndices: [2x6 double]
PositionImageIndices: [2x6 double]
PositionWorldCoordinates: [3x6 double]
RelativeFrame: [1x1 double]
SegmentationData: [640x480 double]
SkeletonTrackingID: [1x6 double]
TriggerIndex: [1x1 double]

These metadata fields are related to tracking the skeletons.

MetaData Description

AbsTime This is a 1 x 1 double and represents
the full timestamp, including date
and time, in MATLAB clock format.

FrameNumber This is a 1 x 1 double and represents
the frame number.

IsPositionTracked This is a 1 x 6 Boolean matrix of
true/false values for the tracking
of the position of each of the
six skeletons. A 1 indicates the
position is tracked and a 0 indicates
it is not.

IsSkeletonTracked This is a 1 x 6 Boolean matrix of
true/false values for the tracked
state of each of the six skeletons.
A 1 indicates it is tracked and a 0
indicates it is not.

10-19

10 Using the Kinect for Windows Adaptor

MetaData Description

JointDepthIndices If the BodyPosture property is
set to Standing, this is a 20 x
2 x 6 double matrix of x-and
y-coordinates for 20 joints in
pixels relative to the depth image,
for the six possible skeletons. If
BodyPosture is set to Seated, this
would be a 10 x 2 x 6 double for 10
joints.

JointImageIndices If the BodyPosture property is
set to Standing, this is a 20 x
2 x 6 double matrix of x-and
y-coordinates for 20 joints in
pixels relative to the color image,
for the six possible skeletons. If
BodyPosture is set to Seated, this
would be a 10 x 2 x 6 double for 10
joints.

JointTrackingState This 20 x 6 integer matrix contains
enumerated values for the tracking
accuracy of each joint for all six
skeletons. Values include:

0 not tracked

1 position inferred

2 position tracked

JointWorldCoordinates This is a 20 x 3 x 6 double matrix
of x-, y- and z-coordinates for 20
joints, in meters from the sensor,
for the six possible skeletons, if the
BodyPosture is set to Standing. If
it is set to Seated, this would be a
10 x 3 x 6 double for 10 joints.

See step 9 for the syntax on how to
see this data.

10-20

Acquiring Image and Skeletal Data Using Kinect

MetaData Description

PositionDepthIndices A 2 x 6 double matrix of X and
Y coordinates of each skeleton in
pixels relative to the depth image.

PositionImageIndices A 2 x 6 double matrix of X and
Y coordinates of each skeleton in
pixels relative to the color image.

PositionWorldCoordinates A 3 x 6 double matrix of the X, Y
and Z coordinates of each skeleton
in meters relative to the sensor.

RelativeFrame This 1 x 1 double represents the
frame number relative to the
execution of a trigger if triggering
is used.

SegmentationData Image size double array with each
pixel mapped to a tracked/detected
skeleton, represented by numbers
1 to 6. This segmentation map
is a bitmap with pixel values
corresponding to the index of the
person in the field-of-view who is
closest to the camera at that pixel
position. A value of 0 means there
is no tracked skeleton.

SkeletonTrackingID This 1 x 6 integer matrix contains
the tracking IDs of all six skeletons.
These IDs track specific skeletons
using the SkeletonsToTrack
property in step 5.

Tracking IDs are generated by the
Kinect and change from acquisition
to acquisition.

TriggerIndex This is a 1 x 1 double and represents
the trigger the event is associated
with if triggering is used.

10-21

10 Using the Kinect for Windows Adaptor

9 You can look at any individual property by drilling into the metadata. For
example, look at the IsSkeletonTracked property.

metaData.IsSkeletonTracked

ans =

1 0 0 0 0 0

In this case it means that of the six possible skeletons, there is one skeleton
being tracked and it is in the first position. If you have multiple skeletons,
this property is useful to confirm which ones are being tracked.

10-22

Acquiring Image and Skeletal Data Using Kinect

10 Get the joint locations for the first person in world coordinates using the
JointWorldCoordinates property. Since this is the person in position
1, the index uses 1.

metaData.JointWorldCoordinates(:,:,1)

ans =

-0.1408 -0.3257 2.1674
-0.1408 -0.2257 2.1674
-0.1368 -0.0098 2.2594
-0.1324 0.1963 2.3447
-0.3024 -0.0058 2.2574
-0.3622 -0.3361 2.1641
-0.3843 -0.6279 1.9877
-0.4043 -0.6779 1.9877
0.0301 -0.0125 2.2603
0.2364 0.2775 2.2117
0.3775 0.5872 2.2022
0.4075 0.6372 2.2022

-0.2532 -0.4392 2.0742
-0.1869 -0.8425 1.8432
-0.1869 -1.2941 1.8432
-0.1969 -1.3541 1.8432
-0.0360 -0.4436 2.0771
0.0382 -0.8350 1.8286
0.1096 -1.2114 1.5896
0.1196 -1.2514 1.5896

The columns represent the X, Y, and Z coordinates in meters of the 20
points on skeleton 1.

11 You can optionally view the segmentation data as an image.

% View the segmentation data as an image.
imagesc(metaDataDepth.SegmentationData);
% Set the color map to jet to color code the people detected.
colormap(jet);

10-23

10 Using the Kinect for Windows Adaptor

BodyPosture Joint Indices

The BodyPosture property, in step 5, indicates whether the tracked skeletons
are standing or sitting. Values are Standing (gives 20 point skeleton data)
and Seated (gives 10 point skeleton data, using joint indices 2 - 11).

This is the order of the joints returned by the Kinect adaptor:

Hip_Center = 1;
Spine = 2;
Shoulder_Center = 3;
Head = 4;
Shoulder_Left = 5;
Elbow_Left = 6;
Wrist_Left = 7;
Hand_Left = 8;
Shoulder_Right = 9;
Elbow_Right = 10;
Wrist_Right = 11;
Hand_Right = 12;
Hip_Left = 13;
Knee_Left = 14;
Ankle_Left = 15;
Foot_Left = 16;
Hip_Right = 17;
Knee_Right = 18;
Ankle_Right = 19;
Foot_Right = 20;

When BodyPosture is set to Standing, all 20 indices are returned, as shown
above. When BodyPosture is set to Seated, numbers 2 through 11 are
returned, since this represents the upper body of the skeleton.

10-24

Acquiring Image and Skeletal Data Using Kinect

Note To understand the differences in using the Kinect adaptor compared
to previous toolbox adaptors, see “Important Information About the Kinect
Adaptor” on page 10-2. For information about Kinect device discovery and the
use of two device IDs, see “Detecting the Kinect Devices” on page 10-8. For an
example of simultaneous acquisition, see “Acquiring from Color and Depth
Devices Simultaneously” on page 10-26.

10-25

10 Using the Kinect for Windows Adaptor

Acquiring from Color and Depth Devices Simultaneously
You can synchronize the data from the Kinect for Windows color stream and
the depth stream using software manual triggering.

This synchronization method example triggers both objects manually.

1 Create the objects for the color and depth sensors. Device 1 is the color
sensor and Device 2 is the depth sensor.

vid = videoinput('kinect',1);
vid2 = videoinput('kinect',2);

2 Get the source properties for the depth device.

srcDepth = getselectedsource(vid2);

3 Set the frames per trigger for both devices to 1.

vid.FramesPerTrigger = 1;
vid2.FramesPerTrigger = 1;

4 Set the trigger repeat for both devices to 200, in order to acquire 201 frames
from both the color sensor and the depth sensor.

vid.TriggerRepeat = 200;
vid2.TriggerRepeat = 200;

5 Configure the camera for manual triggering for both sensors.

triggerconfig([vid vid2],'manual');

6 Start both video objects.

start([vid vid2]);

10-26

Acquiring from Color and Depth Devices Simultaneously

7 Trigger the devices, then get the acquired data.

% Trigger 200 times to get the frames.
for i = 1:201

% Trigger both objects.
trigger([vid vid2])
% Get the acquired frames and metadata.
[imgColor, ts_color, metaData_Color] = getdata(vid);
[imgDepth, ts_depth, metaData_Depth] = getdata(vid2);

end

10-27

10 Using the Kinect for Windows Adaptor

Using Skeleton Viewer for Kinect Skeletal Data
If you do an acquisition with a Kinect for Windows and get skeletal data, you
can view the skeleton joints in this viewer. This example function displays
one RGB image with skeleton joint locations overlaid on the image.

1 Create the Kinect objects and acquire image and skeletal data, as shown in
“Acquiring Image and Skeletal Data Using Kinect” on page 10-10.

2 Use the skeletonViewer function to view the skeletal data.

In this code, skeleton is the joint image locations returned by the Kinect
depth sensor, and image is the RGB image corresponding to the skeleton
frame. nSkeleton is the number of skeletons.

function [] = skeletonViewer(skeleton, image, nSkeleton)

This is the order of the joints returned by the Kinect adaptor:

Hip_Center = 1;
Spine = 2;
Shoulder_Center = 3;
Head = 4;
Shoulder_Left = 5;
Elbow_Left = 6;
Wrist_Left = 7;
Hand_Left = 8;
Shoulder_Right = 9;
Elbow_Right = 10;
Wrist_Right = 11;
Hand_Right = 12;
Hip_Left = 13;
Knee_Left = 14;
Ankle_Left = 15;
Foot_Left = 16;
Hip_Right = 17;
Knee_Right = 18;
Ankle_Right = 19;
Foot_Right = 20;

10-28

Using Skeleton Viewer for Kinect Skeletal Data

3 Show the RGB image.

imshow(image);

4 Create a skeleton connection map to link the joints.

SkeletonConnectionMap = [[1 2]; % Spine
[2 3];
[3 4];
[3 5]; %Left Hand
[5 6];
[6 7];
[7 8];
[3 9]; %Right Hand
[9 10];
[10 11];
[11 12];
[1 17]; % Right Leg
[17 18];
[18 19];
[19 20];
[1 13]; % Left Leg
[13 14];
[14 15];
[15 16]];

5 Draw the skeletons on the RGB image.

for i = 1:19

if nSkeleton > 0

X1 = [skeleton(SkeletonConnectionMap(i,1),1,1) skeleton(SkeletonConnectionMap(i,2),1

Y1 = [skeleton(SkeletonConnectionMap(i,1),2,1) skeleton(SkeletonConnectionMap(i,2),2

line(X1,Y1, 'LineWidth', 1.5, 'LineStyle', '-', 'Marker', '+', 'Color', 'r');

end

if nSkeleton > 1

X2 = [skeleton(SkeletonConnectionMap(i,1),1,2) skeleton(SkeletonConnectionMap(i,2),1

Y2 = [skeleton(SkeletonConnectionMap(i,1),2,2) skeleton(SkeletonConnectionMap(i,2),2

line(X2,Y2, 'LineWidth', 1.5, 'LineStyle', '-', 'Marker', '+', 'Color', 'g');

end

hold on;

10-29

10 Using the Kinect for Windows Adaptor

end

hold off;

The viewer will show the following for this example, which contains the
color image of one person, with the skeletal data overlaid on the image.

10-30

Installing the Kinect for Windows Runtime

Installing the Kinect for Windows Runtime
In order to use the Kinect for Windows support in the Image Acquisition
Toolbox, you must have version 1.6 or higher of the Kinect for Windows
Runtime installed on your system. If you already have it installed, you do not
need to follow the instructions in this section. If you do not have it installed,
you need to install it following the procedure in this section. After you
complete this process, you can acquire images using the Kinect for Windows
with the Image Acquisition Toolbox, as described in the sections referred to in
“Important Information About the Kinect Adaptor” on page 10-2.

Using this installation process, you download and install the following file(s)
on your host computer:

• Kinect for Windows Runtime

Note You can use this support package only on a host computer running a
version of 32-bit or 64-bit Windows that Image Acquisition Toolbox supports.

1 In MATLAB type:

supportPackageInstaller

to open the Support Package Installer.

You can also open the installer from MATLAB: Home > Resources >
Add-Ons > Get Hardware Support Packages.

10-31

10 Using the Kinect for Windows Adaptor

2 On the Select an action screen, select Install from Internet then
click Next. This option is selected by default. Support Package Installer
downloads and installs the support package and third-party software from
the Internet.

10-32

Installing the Kinect for Windows Runtime

3 On the Select support package to install screen, select Kinect for
Windows Runtime from the list.

Accept or change the Installation folder and click Next.

Note You must have write privileges for the Installation folder.

4 On the MATHWORKS AUXILIARY SOFTWARE LICENSE
AGREEMENT screen, select the I accept checkbox and click Next.

10-33

10 Using the Kinect for Windows Adaptor

5 The Third-party software licenses screen displays your choice of Image
Acquisition Toolbox Support Package for Kinect for Windows Runtime.

Review the information, including the license agreements, and click Next.

10-34

Installing the Kinect for Windows Runtime

6 On the Confirm installation screen, Support Package Installer confirms
that you are installing the support package, and lists the installation
location. Confirm your selection and click Install.

7 Support Package Installer displays a progress bar while it downloads and
installs the Image Acquisition Toolbox support package and third-party
software.

Note If you installed the support package previously, Support Package
Installer removes the files from that installation before installing the
current support package. If Support Package Installer cannot remove
those files automatically, it instructs you to delete the files manually.
Close MATLAB before removing the files. Then, restart MATLAB and run
Support Package Installer again.

10-35

10 Using the Kinect for Windows Adaptor

8 Toward the end of the installation process, a Kinect for Windows End
User License Agreement dialog appears. Follow the prompts to accept
the license agreement.

9 After the installation is complete you will see a confirmation message on
the Install/update complete screen. Click Finish to close the Support
Package Installer.

Troubleshooting

If the setup fails, it could be caused by an internet security setting. If you get
an error message such as “KINECT Setup Failed – An error occurred while
installing,” try the following and then run the installer again.

1 In Internet Explorer, go to Tools > Internet Options.

2 In Internet Options, select the Advanced tab.

3 Under the Security subsection, uncheck Check for publisher’s
certificate revocation to temporarily disable it, and click OK.

4 Run the installer again.

5 After you have installed the support package, re-enable the security option
in Internet Explorer.

10-36

Support Packages and Support Package Installer

Support Packages and Support Package Installer

What Is a Support Package?
A support package is an add-on that enables you to use a MathWorks product
with specific third-party hardware and software.

Support packages can include:

• Simulink block libraries

• MATLAB functions, classes, and methods

• Firmware updates for the third-party hardware

• Automatic installation of third-party software

• Examples and tutorials

A support package file has a *.zip extension. This type of file contains
MATLAB files, MEX files, and other supporting files required to install the
support package. Use Support Package Installer to install these support
package files.

A support package installation file has a *.mlpkginstall extension. You
can double click this type of file to start Support Package Installer, which
preselects a specific support package for installation. You can download these
files from MATLAB Central File Exchange and use them to share support
packages with others.

What Is Support Package Installer?
Support Package Installer is a wizard that guides you through the process of
installing support packages.

You can use Support Package Installer to:

• Display a list of available, installable, installed, or updatable support
packages

• Install, update, download, or uninstall a support package.

• Update the firmware on specific third-party hardware.

10-37

10 Using the Kinect for Windows Adaptor

• Provide your MathWorks software with information about required
third-party software.

If third-party software is included, Support Package Installer displays a list of
the software and licenses for you to review before continuing.

You can start Support Package Installer in one of the following ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware Support
Packages.

• In the MATLAB Command Window, enter supportPackageInstaller.

• Double-click a support package installation file (*.mlpkginstall).

10-38

Install This Support Package on Other Computers

Install This Support Package on Other Computers
You can download a support package to one computer, and then install it on
other computers. You can use this approach to:

• Save time when installing support packages on multiple computers.

• Install support packages on computers that are not connected to the
Internet.

Before starting, select a computer to use for downloading. This computer must
have the same base product license and platform as the computers upon which
you are installing the support package. For example, suppose you want to
install a Simulink support package on a group of computers that are running
64-bit Windows. To do so, you must first download the support package using
a computer that has a Simulink license and is running 64-bit Windows.

Download the support package to one computer:

1 In the MATLAB Command Window, enter supportPackageInstaller.

2 In Support Package Installer, on the Select an action screen, choose
Install from Internet or Download from Internet. Click Next.

3 On the following screen, select only one support package.

Notice the path of the Download folder. For example,
C:\MATLAB\SupportPackages\R2013b\downloads.

4 Using the file manager on your computer, open the downloads folder and
observe its contents.

5 Using Support Package Installer, complete the installation or download
process.

This process creates a folder within the Download folder. In some cases,
if the support package requires another support package, this process
creates an additional folder.

Prepare and share the support package files:

10-39

10 Using the Kinect for Windows Adaptor

1 In the file manager, check how many folders were created during the
installation or download process.

2 If more than one folder was created, combine the contents of the folders
into the folder named after the support package.

For example,
C:\MATLAB\SupportPackages\R2013b\downloads\support_package_name.

3 Make that folder available to other computers by sharing it on the network,
or copying it to portable media, such as a USB flash drive.

Note Some support packages require that you install third-party software
separately before completing the support package installation process. In
that case, also make the third-party software available for installation on
the other computers.

Install the support package on the other computers:

1 Run Support Package Installer on the other computer or computers.

2 On the Install or update support package screen, select the Folder
option.

3 Use Browse to specify the location of the support package folder on the
network or portable media.

4 Complete the instructions provided by Support Package Installer.

10-40

Open Examples for This Support Package

Open Examples for This Support Package

In this section...

“Using the Help Browser” on page 10-41

“Using the Block Library” on page 10-43

“Using Support Package Installer” on page 10-44

Using the Help Browser
You can open support package examples from the Help browser:

1 Enter doc in the MATLAB Command Window.

2 In the Help browser, click Supplemental Software in the lower left
corner of the Home page.

10-41

10 Using the Kinect for Windows Adaptor

3 In Supplemental Software, double-click Examples.

10-42

Open Examples for This Support Package

4 Select the examples for your support package.

Note For other types of examples, open the Help browser and search for your
product name followed by “examples”.

Using the Block Library
To open support package from the support package block library:

1 Enter simulink in the MATLAB Command Window.

2 In Simulink Library Browser, open the support package block library.

3 In the block library, double-click the Examples block.

10-43

10 Using the Kinect for Windows Adaptor

Using Support Package Installer
Support Package Installer (supportPackageInstaller) automatically
displays the support package examples when you complete the process of
installing and setting up a support package.

10-44

Open Examples for This Support Package

On the last screen in Support Package Installer, leave Show support
package examples enabled and click Finish.

10-45

10 Using the Kinect for Windows Adaptor

10-46

11

Using the VideoDevice
System Object

• “VideoDevice System Object Overview” on page 11-2

• “Creating the VideoDevice System Object” on page 11-3

• “Using VideoDevice System Object to Acquire Frames” on page 11-5

• “Using Properties on a VideoDevice System Object” on page 11-10

• “Code Generation with VideoDevice System Object” on page 11-14

11 Using the VideoDevice System Object

VideoDevice System Object Overview
The Image Acquisition Toolbox introduces the VideoDevice System object™,
which allows single-frame image acquisition and code generation from
MATLAB.

You use the imaq.VideoDevice function to create the System object. It
supports the same adaptors and hardware that the videoinput object
supports; however, it has different functions and properties associated with
it. For example, the System object uses the step function to acquire single
frames.

11-2

Creating the VideoDevice System Object

Creating the VideoDevice System Object
You use the imaq.VideoDevice function to create the System object. You can
specify the adaptorname, deviceid, and format at the time of object creation,
or it will use defaults, as follows.

Constructor Purpose

obj = imaq.VideoDevice Creates a VideoDevice System object,
obj, that acquires images from a
specified image acquisition device.
When you specify no parameters, by
default, it selects the first available
device for the first adaptor returned
by imaqhwinfo.

obj =
imaq.VideoDevice(adaptorname)

Creates a VideoDevice System
object, obj, using the first device
of the specified adaptorname.
adaptorname is a text string that
specifies the name of the adaptor
used to communicate with the
device. Use the imaqhwinfo function
to determine the adaptors available
on your system.

obj =
imaq.VideoDevice(adaptorname,
deviceid)

Creates a VideoDevice System
object, obj, with the default format
for specified adaptorname and
deviceid. deviceid is a numeric
scalar value that identifies a
particular device available through
the specified adaptorname. Use
the imaqhwinfo(adaptorname)
syntax to determine the devices
available and corresponding values
for deviceid.

11-3

11 Using the VideoDevice System Object

Constructor Purpose

obj =
imaq.VideoDevice(adaptorname,
deviceid, format)

Creates a VideoDevice System
object, obj, where format is a text
string that specifies a particular
video format supported by the device
or a device configuration file (also
known as a camera file).

obj =
imaq.VideoDevice(adaptorname,
deviceid, format, P1, V1, ...)

Creates a VideoDevice System object,
obj, with the specified property
values. If an invalid property name
or property value is specified, the
object is not created.

Specifying properties at the time of object creation is optional. They can also
be specified after the object is created. See “Using Properties on a VideoDevice
System Object” on page 11-10 for a list of applicable properties.

11-4

Using VideoDevice System Object to Acquire Frames

Using VideoDevice System Object to Acquire Frames
You can use these functions with the VideoDevice System object.

Function Purpose

step Acquire a single frame from the image acquisition
device.

frame = step(obj);

acquires a single frame from the VideoDevice System
object, obj.

Note that the first time you call step, it acquires
exclusive use of the hardware and will start streaming
data.

release Release VideoDevice resources and allow property
value changes.

release(obj)

releases system resources (such as memory, file
handles, or hardware connections) of System
object, obj, and allows all its properties and input
characteristics to be changed.

isLocked Returns a value that indicates if the VideoDevice
resource is locked. (Use release to unlock.)

L = isLocked(obj)

returns a logical value, L, which indicates whether
properties are locked for the System object, obj. The
object performs an internal initialization the first time
the step function is executed. This initialization locks
properties and input specifications. Once this occurs,
the isLocked function returns a value of true.

11-5

11 Using the VideoDevice System Object

Function Purpose

preview Activate a live image preview window.

preview(obj)

creates a Video Preview window that displays live
video data for the VideoDevice System object, obj. The
Video Preview window displays the video data at 100%
magnification (one screen pixel represents one image
pixel). The size of the preview image is determined
by the value of the VideoDevice System object ROI
property. If not specified, it uses the default resolution
for the device.

closepreview Close live image preview window.

closepreview(obj)

closes the live preview window for VideoDevice System
object, obj.

imaqhwinfo Returns information about the object.

imaqhwinfo(obj)

displays information about the VideoDevice System
object, obj.

The basic workflow for using the VideoDevice System object is to create the
object, preview the image, set any properties, acquire a frame, and clear the
object, as shown here.

1 Construct a VideoDevice System object associated with the Winvideo
adaptor with device ID of 1.

vidobj = imaq.VideoDevice('winvideo', 1);

2 Set an object-level property, such as ReturnedColorSpace.

set(vidobj, 'ReturnedColorSpace', 'grayscale');

11-6

Using VideoDevice System Object to Acquire Frames

Note that the syntax for an object-level property is to use set on the object,
then the property name and property value.

3 Set a device-specific property, such as Brightness.

set(vidobj.DeviceProperties, 'Brightness', 150);

Note that the syntax for a device-specific property is to use set with the
DeviceProperties object using dot notation, then the property name and
property value.

4 Preview the image.

preview(vidobj)

5 Acquire a single frame using the step function.

frame = step(vidobj);

6 Display the acquired frame.

imshow(frame)

7 Release the hardware resource.

release(vidobj);

8 Clear the VideoDevice System object.

clear vidobj;

Kinect for Windows Metadata
You can return Kinect for Windows skeleton data using the VideoDevice
System object on the Kinect Depth sensor.

Typically in the Image Acquisition Toolbox, each camera or image device has
one device ID. Because the Kinect for Windows camera has two separate
sensors, the Color sensor and the Depth sensor, the toolbox lists two device
IDs. The Kinect Color sensor is device 1 and the Kinect depth sensor is
device 2.

11-7

11 Using the VideoDevice System Object

To create a System object using the Color sensor:

vidobjcolor = imaq.VideoDevice('kinect', 1);

To create a System object using the Depth sensor:

vidobjdepth = imaq.VideoDevice('kinect', 2);

The Depth sensor returns skeleton metadata. To access this, you need to add
a second output argument for the step function. The Color sensor works
the same way as other devices. So acquiring a frame using the Kinect Color
sensor is done as shown here:

imageData = step(vidobjcolor);

where imageData is the frame acquired if vidobjcolor is a System object
created with Device 1, the Kinect Color sensor.

The Kinect Depth sensor requires a second output argument, as shown here:

[depthData metadata] = step(vidobjdepth);

where depthData is the frame acquired if vidobjdepth is a System object
created with Device 2, the Kinect Depth sensor, and metadata is the skeleton
metadata returned with the frame.

These metadata fields are related to tracking the skeletons. The metadata is
returned as a structure that contains these parameters:

IsPositionTracked
IsSkeletonTracked
JointDepthIndices
JointImageIndices
JointTrackingState
JointWorldCoordinates
PositionDepthIndices
PositionImageIndices
PositionWorldCoordinates
SegmentationData
SkeletonTrackingID

11-8

Using VideoDevice System Object to Acquire Frames

You can then look at both outputs. To see the image frame:

imshow(imageData)

To see the metadata output:

metadata

Note The Kinect for Windows Depth sensor may take some seconds to be
ready to begin acquiring skeletal metadata. In order to see values in the
metadata output, you need to acquire multiple frames using the step function
repeatedly. You can do this by using a for loop.

“Acquiring Image and Skeletal Data Using Kinect” on page 10-10 is an
example that shows how to access the skeletal metadata using the videoinput
object (not the VideoDevice System object), and it contains information
about the properties you can set on both the Color and Depth sensors, and
descriptions of all the metadata fields. The property names and values are
the same as they would be for the System object, but you would then need
to set the properties as shown in step 3 of the above example (in the current
topic) for use with the VideoDevice System object.

11-9

11 Using the VideoDevice System Object

Using Properties on a VideoDevice System Object
You can specify properties at the time of object creation, or they can be
specified and changed after the object is created.

Properties that can be used with the VideoDevice System object include:

Property Description

Device Device from which to acquire images.

Specify the image acquisition device to use to
acquire a frame. It consists of the device name,
adaptor, and device ID. The default device is the
first device returned by imaqhwinfo.

set(obj, 'Device')

shows the list of available devices for VideoDevice
System object, obj.

VideoFormat Video format to be used by the image acquisition
device.

Specify the video format to use while acquiring
the frame. The default value of VideoFormat is
the default format returned by imaqhwinfo for
the selected device. To specify a Video Format
using a device file, set the VideoFormat property
to 'From device file' This option exists only if
your device supports device configuration files.

set(obj, 'VideoFormat')

shows the list of available video formats.

DeviceFile Name of file specifying video format. This
property is only visible when VideoFormat is set
to 'From device file'.

11-10

Using Properties on a VideoDevice System Object

Property Description

DeviceProperties Object containing properties specific to the image
acquisition device.

set(obj.DeviceProperties, <property_name>,
<property_value>)

shows a device-specific property for VideoDevice
System object, obj.

ROI Region-of-interest for acquisition. This is set to
the default ROI value for the specified device,
which is the maximum resolution possible for
the specified format. You can change the value
to change the size of the captured image. The
format is 1-based, that is, it is specified in pixels
in a 1-by-4 element vector [x y width height],
where x is x offset and y is y offset.

Note that this differs from the videoinput object,
the Image Acquisition Tool, and the From Video
Device block, all of which are 0-based.

HardwareTriggering Turn hardware triggering on/off. Set this property
to 'on' to enable hardware triggering to acquire
images. The property is visible only when the
device supports hardware triggering.

TriggerConfiguration Specifies the trigger source and trigger condition
before acquisition. The triggering condition must
be met via the trigger source before a frame is
acquired. This property is visible only when
HardwareTriggering is set to 'on'.

set(obj, 'TriggerConfiguration')

shows the list of available hardware trigger
configurations.

11-11

11 Using the VideoDevice System Object

Property Description

ReturnedColorSpace Specify the color space of the returned image.
The default value of the property depends
on the device and the video format selected.
Possible values are {rgb|grayscale|YCbCr}
when the default returned color space for the
device is not grayscale. Possible values are
{rgb|grayscale|YCbCr|bayer} when the default
returned color space for the device is grayscale

set(obj, 'ReturnedColorSpace')

shows the list of available color space settings.

BayerSensorAlignment String indicating the 2x2 sensor alignment.
Specifies Bayer patterns returned by hardware.
Specify the sensor alignment for Bayer
demosaicing. The default value of this
property is 'grbg'. Possible values are
{grbg|gbrg|rggb|bggr}. Visible only if
ReturnedColorSpace is set to 'bayer'.

set(obj, 'BayerSensorAlignment')

shows the list of available sensor alignments.

ReturnedDataType The returned data type of the acquired frame.
The default ReturnedDataType is single.

set(obj, 'ReturnedDataType')

shows the list of available data types.

Note The setting of properties for the System object supports tab completion
for enumerated properties while coding in MATLAB. Using the tab completion
is an easy way to see available property values. After you type the property
name, type a comma, then a space, then the first quote mark for the value,
then hit tab to see the possible values.

11-12

Using Properties on a VideoDevice System Object

Once you have created a VideoDevice System object, you can set either
object-level properties or device-specific properties on it.

To set an object-level property, use this syntax:

set(vidobj, 'ReturnedColorSpace', 'grayscale');

You can see that the syntax for an object-level property is to use set on the
object name, property name, and property value.

Another example of an object-level property is setting the region-of-interest,
or ROI, to change the dimensions of the acquired image. The ROI format is
specified in pixels in a 1-by-4 element vector [x y width height].

set(vidobj, 'ROI', [1 1 200 200]);

Note This ROI value is 1-based. This differs from the videoinput object,
the Image Acquisition Tool, and the From Video Device block, all of which
are 0-based.

To set a device-specific property, use this syntax:

set(vidobj.DeviceProperties, 'Brightness', 150);

You can see that the syntax for a device-specific property is to use set with
the DeviceProperties object using dot notation, then the property name
and property value.

Another example of a device-specific property is setting the frame rate for a
device that supports it.

set(vidobj.DeviceProperties, 'FrameRate', '30');

Note Once you have done a step, in order to change a property or set a new
one, you need to release the object using the release function, before setting
the new property.

11-13

11 Using the VideoDevice System Object

Code Generation with VideoDevice System Object

In this section...

“Using the codegen Function” on page 11-14

“Shared Library Dependencies” on page 11-15

“Usage Rules for System Objects in Generated MATLAB Code” on page
11-15

“Limitations on Using System Objects in Generated MATLAB Code” on
page 11-16

Using the codegen Function
The VideoDevice System object supports code generation in MATLAB
via the codegen function. To use the codegen function, you must have a
MATLAB Coder license. System objects also support code generation using
the MATLAB Function block in Simulink. You can also use the System object
with MATLAB Compiler™.

Note The MATLAB Compiler software supports System objects for use
inside MATLAB functions. The MATLAB Compiler does not support System
objects for use in MATLAB scripts.

Note If you use the codegen command to generate a MEX function on
a Windows platform, you need to perform imaqreset before running the
generated MEX file.

Note The codegen command can be used to generate executable files on
non-Windows platforms. However, generation of the MEX function is not
supported on Linux and Mac platforms.

11-14

Code Generation with VideoDevice System Object

For more information see the documentation for the MATLAB codegen
function.

Shared Library Dependencies
The VideoDevice System object generates code with limited portability. The
System object uses precompiled shared libraries, such as DLLs, to support I/O
for specific types of devices. The shared library locations that the generated
executable requires are as follows:

• Specific MathWorks shared libraries under
[MATLABROOT]\bin\<ARCH>\

• MathWorks adaptor libraries under
[MATLABROOT]\toolbox\imaq\imaqadaptors\<ARCH>\ specific
to the device selected.

You will need to add the above folders to your system path before running the
generated executable outside of MATLAB.

Usage Rules for System Objects in Generated
MATLAB Code

• Assign System objects to persistent variables.

• Global variables are not supported.

• Initialize System objects once by embedding the object handles in an if
statement with a call to isempty().

• Call the constructor exactly once for each System object.

• Set arguments to System object constructors as compile-time constants.

• Use the object constructor to set System object properties because you
cannot use dot notation for code generation. You can use the get function
to display properties.

• Test your code in simulation before generating code.

The following shows an example of some of these rules.

% Note: System Objects created for Codegen have to be persistent variables.

11-15

11 Using the VideoDevice System Object

persistent vid;

% Construct the IMAQ VideoDevice System Object.
if isempty(vid)

% Note: All required parameters must be passed to the System Object at
% the point of construction.
vid = imaq.VideoDevice('winvideo', 1, 'MJPG_320x240', ...

'ROI', [1 1 320 240], ...
'ReturnedColorSpace', 'rgb', ...
'DeviceProperties.Brightness', 130, ...
'DeviceProperties.Sharpness', 220);

end

Limitations on Using System Objects in Generated
MATLAB Code
Ensure that the value assigned to a nontunable or public property is a
constant and that there is at most one assignment to that property (including
the assignment in the constructor). Do not set any properties during code
generation.

11-16

Code Generation with VideoDevice System Object

The only System object functions supported in code generation are:

• get

• getNumInputs

• getNumOutputs

• reset

• step

Do not set System objects to become outputs from the MATLAB Function
block.

Do not pass a System object as an example input argument to a function
being compiled with codegen.

Do not pass a System object to functions declared as extrinsic (i.e., functions
called in interpreted mode) using the coder.extrinsic function. Do not
return System objects from any extrinsic functions.

11-17

11 Using the VideoDevice System Object

11-18

12

Adding Support for
Additional Hardware

12 Adding Support for Additional Hardware

Support for Additional Hardware
The Image Acquisition Toolbox software supports connections with hardware
from many common vendors, but it might not support the hardware you use.
To add support for your hardware, you can create an adaptor using the Image
Acquisition Toolbox Adaptor Kit.

The Image Acquisition Toolbox Adaptor Kit is a C++ framework that you can
use to implement an adaptor. An adaptor is a dynamic link library (DLL) that
implements the connection between the Image Acquisition Toolbox engine
and a device driver via the vendor’s SDK API. When you use the Adaptor Kit
framework, you can take advantage of many prepackaged toolbox features
such as disk logging, multiple triggering modes, and a standardized interface
to the image acquisition device.

After you create your adaptor DLL and register it with the toolbox using the
imaqregister function, you can create a video input object to connect with
a device through your adaptor. In this way, adaptors enable the dynamic
loading of support for hardware without requiring recompilation and linking
of the toolbox.

To build an adaptor requires familiarity with C++, knowledge of the
application programming interface (API) provided by the manufacturer of
your hardware, and familiarity with Image Acquisition Toolbox concepts,
functionality, and terminology. To learn more about creating an adaptor, see
“Creating Custom Adaptors”. For detailed information about the adaptor
kit framework classes, see the Image Acquisition Toolbox Adaptor Kit Class
Reference, which is available in

matlabroot\toolbox\imaq\imaqadaptors\kit\doc\adaptorkit.chm

where matlabroot represents your MATLAB installation directory.

12-2

13

Troubleshooting

This chapter provides information about solving common problems you
might encounter with the Image Acquisition Toolbox software and the video
acquisition hardware it supports.

• “Troubleshooting Overview” on page 13-3

• “DALSA Coreco IFC Hardware” on page 13-4

• “DALSA Coreco Sapera Hardware” on page 13-6

• “Data Translation Hardware” on page 13-8

• “DCAM IEEE 1394 (FireWire) Hardware on Windows” on page 13-9

• “Hamamatsu Hardware” on page 13-16

• “Matrox Hardware” on page 13-17

• “QImaging Hardware” on page 13-19

• “National Instruments Hardware” on page 13-21

• “Point Grey Hardware” on page 13-23

• “GigE Vision Hardware” on page 13-26

• “GenICam GenTL Hardware” on page 13-34

• “Windows Video Hardware” on page 13-36

• “Linux Video Hardware” on page 13-39

• “Linux DCAM IEEE 1394 Hardware” on page 13-41

• “Macintosh Video Hardware” on page 13-42

• “Macintosh DCAM IEEE 1394 Hardware” on page 13-43

• “Video Preview Window Troubleshooting” on page 13-44

13 Troubleshooting

• “Contacting MathWorks and Using the imaqsupport Function” on page
13-45

13-2

Troubleshooting Overview

Troubleshooting Overview
If, after installing the Image Acquisition Toolbox software and using it to
establish a connection to your image acquisition device, you are unable to
acquire data or encounter other problems, try these troubleshooting steps
first. They might help fix the problem.

1 Verify that your image acquisition hardware is functioning properly.

2 If the hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the Image Acquisition
Toolbox software.

The following sections describe how to perform these steps for the vendors and
categories of devices supported by the Image Acquisition Toolbox software.

If you are encountering problems with the preview window, see “Video
Preview Window Troubleshooting” on page 13-44.

Note To see the full list of hardware that the toolbox supports, visit
the Image Acquisition Toolbox product page at the MathWorks Web site
www.mathworks.com/products/imaq.

13-3

http://www.mathworks.com/products/imaq

13 Troubleshooting

DALSA Coreco IFC Hardware

In this section...

“Troubleshooting DALSA Coreco IFC Devices” on page 13-4

“Determining the Driver Version for DALSA Coreco IFC Devices” on page
13-5

Troubleshooting DALSA Coreco IFC Devices
The Image Acquisition Toolbox software supports the use of both DALSA®

Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco IFC frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco IFC devices, run the application that came with your
hardware, the IFC Camera Configurator, and verify that you can view a
live video stream from your camera.

2 Verify that the toolbox can locate your camera file, if you are using a camera
file to configure the device. Make sure that your camera file appears in the
List of Cameras in the DALSA Coreco IFC Camera Configurator.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the DALSA Coreco hardware and is not guaranteed
to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco IFC Devices” on page 13-5.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of

13-4

DALSA® Coreco IFC Hardware

supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco
IFC Devices
To determine the DALSA Coreco IFC Library version you are using, view the
release notes for the driver. You can access the release notes through the
Windows Start menu.

1 Click the Start button.

2 On the Start menu, select Programs.

3 From the Programs menu, select the IFC link.

4 On the IFC menu, select the IFC release notes.

13-5

http://www.mathworks.com/products/imaq
http://www.imaging.com

13 Troubleshooting

DALSA Coreco Sapera Hardware

In this section...

“Troubleshooting DALSA Coreco Sapera Devices” on page 13-6

“Determining the Driver Version for DALSA Coreco Sapera Devices” on
page 13-7

Troubleshooting DALSA Coreco Sapera Devices
The Image Acquisition Toolbox software supports the use of both DALSA
Coreco IFC hardware and DALSA Coreco Sapera hardware. Please see the
appropriate section depending on which driver your hardware uses.

If you are having trouble using the Image Acquisition Toolbox software with a
supported DALSA Coreco Sapera frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For DALSA Coreco Sapera devices, run the application that came with
your hardware, the Sapera CamExpert, and verify that you can view a
live video stream from your camera.

2 If you are using a camera file to configure the device, verify that the toolbox
can locate your camera file. Make sure that your camera appears in the
Camera list in the Sapera CamExpert. To test the camera, select the
camera in the list and click the Grab button.

3 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the DALSA Coreco hardware and is
not guaranteed to work with any other versions.

13-6

DALSA® Coreco Sapera Hardware

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for DALSA
Coreco Sapera Devices” on page 13-7.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
DALSA Coreco Web site (www.imaging.com) to download the correct driver.

Determining the Driver Version for DALSA Coreco
Sapera Devices
To determine the DALSA Coreco Sapera Library version you are using, view
the release notes for the driver. You can access the release notes through the
Windows Start menu.

1 Click the Start button to open the Start menu.

2 Select Programs > DALSA Coreco Imaging > Sapera LT to open the
Sapera LT menu.

3 Select Readme to view the Sapera release notes.

13-7

http://www.mathworks.com/products/imaq
http://www.imaging.com

13 Troubleshooting

Data Translation Hardware
If you are having trouble using the Image Acquisition Toolbox software with a
supported Data Translation frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Data Translation devices, run the application that came with your
hardware and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided by Data Translation with the Imaging Omni CD and is
not guaranteed to work with any other versions.

• Find out the driver version you are using on your system.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit
the Data Translation Web site (www.datatranslation.com) to download
the correct driver.

3 Install the Data Translation Software Development Kit (SDK).

If the imaqhwinfo function does not return the driver for a Data Translation
frame grabber, or the imaqhwinfo function or videoinput functions return
an error message about a missing DLL (olfg32.dll), you may need to
install additional files from the Imaging Omni CD.

By default, when you install drivers for your Data Translation frame
grabber, the installation program may not install all the files the device
drivers need. The additional files needed by the device driver are part of
the SDK installation, not the device driver installation. If you get error
messages about missing files, insert the Imaging Omni CD into your
CD-ROM drive and install the SDK.

13-8

http://www.mathworks.com/products/imaq
http://www.datatranslation.com

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

DCAM IEEE 1394 (FireWire) Hardware on Windows

In this section...

“Troubleshooting DCAM IEEE 1394 Hardware on Windows” on page 13-9

“Installing the CMU DCAM Driver on Windows” on page 13-10

“Running the CMU Camera Demo Application on Windows” on page 13-12

Troubleshooting DCAM IEEE 1394 Hardware on
Windows
If you are having trouble using the Image Acquisition Toolbox software with
an IEEE 1394 (FireWire) camera, using the toolbox’s dcam adaptor, follow
these troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera is plugged into the IEEE
1394 (FireWire) port on your computer and is powered up.

2 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

• Make sure the camera is compliant with the IIDC 1394-based
Digital Camera (DCAM) specification. Vendors typically include this
information in documentation that comes with the camera. If your digital
camera is not DCAM compliant, you might be able to use the winvideo
adaptor. See “Windows Video Hardware” on page 13-36 for information.

• Make sure the camera outputs data in uncompressed format. Cameras
that output data in Digital Video (DV) format, such as digital camcorders,
cannot use the dcam adaptor. To access these devices, use the winvideo
adaptor. See “Windows Video Hardware” on page 13-36 for information.

• Make sure you specified the dcam adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed
through either the dcam or winvideo adaptors. If you can connect to your
camera from the toolbox but cannot access some camera features, such
as hardware triggering, you might be accessing the camera through a
DirectX® driver. See “Creating a Video Input Object” on page 4-10 for
more information about specifying adaptors.

13-9

13 Troubleshooting

3 Verify that your IEEE 1394 (FireWire) camera is using the Carnegie
Mellon University (CMU) DCAM driver version 6.4.6.

Note The toolbox only supports connections to IEEE 1394 (FireWire)
DCAM-compliant devices using the CMU DCAM driver. The toolbox is
not compatible with any other vendor-supplied driver, even if the driver
is DCAM compliant.

To verify this, run the demo application provided by CMU,
1394CameraDemo.exe. This demo application is among the files you install
from the CMU driver archive file when you install the CMU DCAM driver
— see “Installing the CMU DCAM Driver on Windows” on page 13-10. To
learn how to run the demo application, see “Running the CMU Camera
Demo Application on Windows” on page 13-12.

• If the demo application recognizes the camera, the camera is set up to
use the CMU DCAM driver and is ready for use by the toolbox.

• If the demo application does not recognize the camera, install the CMU
DCAM driver. See “Installing the CMU DCAM Driver on Windows” on
page 13-10 for instructions.

• If the demo application recognizes your camera, but the toolbox still does
not, verify that the camera complies with the correct DCAM specification
version for the camera and the correct DCAM CMU driver version
required by the toolbox. For the correct information about supported
hardware, visit the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

Installing the CMU DCAM Driver on Windows
The Image Acquisition Toolbox software supports acquiring data from IEEE
1394 (FireWire) cameras that support the IIDC 1394-based Digital Camera
(DCAM) specification. To use a DCAM compliant camera, you must use
the DCAM driver created by Carnegie Mellon University (CMU) to connect
to these devices.

13-10

http://www.mathworks.com/products/imaq

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

Note The CMU DCAM driver is the only DCAM driver supported by the
toolbox. You cannot use vendor-supplied drivers, even if they are compliant
with the DCAM specification.

Installing the Driver
To install the CMU DCAM driver on your system, follow this procedure:

1 Obtain the CMU DCAM driver files. The Image Acquisition Toolbox
software includes the CMU DCAM installation file, 1394camera646.exe,
in the directory

matlabroot\toolbox\imaq\imaqextern\drivers\win32\dcam

where matlabroot represents the name of your MATLAB installation
directory.

You can also download the DCAM driver directly from CMU. Go to the Web
site www.cs.cmu.edu/~iwan/1394 and click the download link.

2 Start the installation by double-clicking the .exe file.

On the first page of the installation wizard under Select components to
install, select the first three items in the installation list, and click Next.
On the second page of the wizard, accept the default location or browse to a
new one, and click Install.

Note To install the DCAM driver on a 32-bit Windows 7 system, you must
run the installation program as administrator. Open the folder containing the
installer EXE file. Right-click on it and choose Run as administrator. If you
do not do this, it will fail to install some of the necessary files.

You may need to get your camera recognized after installing the driver.
If this happens, open Device Manager and select the camera software.
Right-click it and choose Update Driver Software. Browse for the vendor
driver software and install it.

13-11

13 Troubleshooting

Running the CMU Camera Demo Application on
Windows
The Carnegie Mellon University (CMU) DCAM driver distribution includes a
camera demo application, named 1394CameraDemo.exe. The demo application
is among the files you installed in the previous section.

You can use this demo application to verify whether your camera is using the
CMU DCAM driver. The following describes the step-by-step procedure you
must perform to access a camera through this demo application.

1 Select Start > Programs > CMU 1394 Camera > 1394 Camera Demo.

2 The application opens a window, shown in the following figure.

3 From the Camera Demo application, select Camera > Check Link. This
option causes the demo application to look for DCAM-compatible cameras
that are available through the IEEE 1394 (FireWire) connection.

The demo application displays the results of this search in a pop-up
message box. In the following example, the demo application found a
camera. Click OK to continue.

13-12

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

4 Select Camera > Select Camera and select the camera you want to use.
The Select Camera option is not enabled until after the Check Link
option has successfully found cameras.

5 Select Camera > Init Camera. In this step, the demo application checks
the values of various camera properties. The demo application might resize
itself to fit the video format of the specified camera. If you see the following
dialog box message, click Yes.

Note If you are using 1394b, select Camera > 1394b Support,
and then check the Maximum Speed option after choosing
1394b support. If you do not see 400 MB per second or
higher, refer to the customer technical solution on that topic,
http://www.mathworks.com/support/solutions/data/1-3LNN8U.html.

6 Select Camera > Show Camera to start acquiring video.

13-13

http://www.mathworks.com/support/solutions/data/1-3LNN8U.html

13 Troubleshooting

13-14

DCAM IEEE® 1394 (FireWire) Hardware on Windows®

The demo application starts displaying live video in the window.

7 To exit, select Stop Camera from the Camera menu and then click Exit.

13-15

13 Troubleshooting

Hamamatsu Hardware
If you are having trouble using the Image Acquisition Toolbox software with a
x Hamamatsu digital camera, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

• Make sure that your camera is plugged into the IEEE 1394 (FireWire)
port on your computer and is powered up.

• Run the application that came with your hardware and verify that you
can acquire video frames. Use the exAcq.exe application, available from
Hamamatsu.

2 Make sure you specified the hamamatsu adaptor when you created the video
input object. Some IEEE 1394 (FireWire) cameras can be accessed through
either the dcam or winvideo adaptors. See “Creating a Video Input Object”
on page 4-10 for more information about specifying adaptors.

3 Verify that you are using the correct hardware device driver that is
compatible with the toolbox. The Image Acquisition Toolbox software is
only compatible with specific driver versions provided by Hamamatsu and
is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Hamamatsu Software API Support page (www.dcamapi.com) to download
the correct driver that is supported by the toolbox, if it is available there. If
it is not available, please contact Hamamatsu to obtain the correct driver.

13-16

http://www.mathworks.com/products/imaq
http://www.dcamapi.com

Matrox® Hardware

Matrox Hardware

In this section...

“Troubleshooting Matrox Devices” on page 13-17

“Determining the Driver Version for Matrox Devices” on page 13-18

Troubleshooting Matrox Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported Matrox frame grabber, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Matrox devices, run the application that came with your hardware,
Matrox Intellicam, and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox. The Image
Acquisition Toolbox software is only compatible with specific driver
versions provided with the Matrox Imaging Library (MIL) or MIL-Lite
software and is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for Matrox
Devices” on page 13-18.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Matrox Web site (www.matrox.com) to download the correct drivers.

Note There is no difference between MIL and MIL-Lite software inside of
MATLAB. They both work with Matrox Imaging devices.

13-17

http://www.mathworks.com/products/imaq
http://www.matrox.com

13 Troubleshooting

Determining the Driver Version for Matrox Devices
To determine the Matrox Imaging Library version you are using, run the
Matrox MIL Configuration utility. You can access this software through the
Windows Start button.

Select Start > Programs > Matrox Imaging Products > MIL
Configuration.

The software version is listed on the Information tab.

Matrox® MIL Configuration Utility

13-18

QImaging Hardware

QImaging Hardware

In this section...

“Troubleshooting QImaging Devices” on page 13-19

“Determining the Driver Version for QImaging Devices” on page 13-20

Troubleshooting QImaging Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported QImaging® camera, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For QImaging devices, run the application that came with your hardware,
QCapture, and verify that you can receive live video.

2 Select Start > Programs > QCapture Suite > QCapture.

3 In QCapture, select Acquire > Live Preview to test that the hardware
is working properly.

4 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the QImaging software and is not
guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn
how to get this information, see “Determining the Driver Version for
QImaging Devices” on page 13-20.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

13-19

http://www.mathworks.com/products/imaq

13 Troubleshooting

If you discover that you are using an unsupported driver version, visit the
QImaging Web site (www.qimaging.com) to download the correct drivers.

Determining the Driver Version for QImaging Devices
To determine the QImaging driver version you are using, run the QImaging
QCapture utility.

Select Start > Programs > QCapture Suite > QCapture, and then select
Help > About to see the driver version number.

13-20

http://www.qimaging.com

National Instruments® Hardware

National Instruments Hardware

In this section...

“Troubleshooting National Instruments Devices” on page 13-21

“Determining the Driver Version for National Instruments Devices” on
page 13-22

Troubleshooting National Instruments Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported National Instruments® frame grabber, follow these troubleshooting
steps:

1 Verify that your image acquisition hardware is functioning properly.

For National Instruments devices, run the application that came with your
hardware, Measurement & Automation Explorer, and verify that you can
receive live video.

2 Select Start > Programs > National Instruments > Measurement
& Automation.

3 To test that the hardware is working properly, in Measurement &
Automation Explorer, expand Devices and Interfaces, then expand
NI-IMAQ Devices, then expand the node that represents the board you
want to use.

4 With the board expanded, select the channel or port that you have
connected a camera to.

5 Click the Grab button to verify that your camera is working. If it is not,
see the National Instruments device documentation.

6 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

13-21

13 Troubleshooting

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the National Instruments software
and is not guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see Determining the Driver Version.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit
the National Instruments Web site (www.ni.com) to download the correct
drivers.

Determining the Driver Version for National
Instruments Devices
To determine the National Instruments driver version you are using, run the
Measurement & Automation Explorer.

Select Help > System Information, and then see the NI–IMAQ Software
field for the driver version number.

13-22

http://www.mathworks.com/products/imaq
http://www.ni.com

Point Grey Hardware

Point Grey Hardware

In this section...

“Troubleshooting Point Grey Devices” on page 13-23

“Determining the Driver Version for Point Grey Devices” on page 13-24

Troubleshooting Point Grey Devices
The Point Grey adaptor includes support for the following types of Point Grey
devices:

• FireWire

• GigE Vision

• USB 2

• Bumblebee 2

If you are having trouble using the Image Acquisition Toolbox software with a
supported Point Grey camera, follow these troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Point Grey devices, run the application that came with your hardware,
FlyCapture, and verify that you can receive live video.

2 Select Start > Programs > Point Grey Research > FlyCapture2 >
FlyCap2.

3 In FlyCapture, select your device and click OK to open the dialog box that
shows the video feed to test that the hardware is working properly.

4 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

13-23

13 Troubleshooting

Note The Image Acquisition Toolbox software is compatible only with
specific driver versions provided with the Point Grey software and is not
guaranteed to work with any other versions.

• Find out the driver version you are using on your system. To learn how
to get this information, see “Determining the Driver Version for Point
Grey Devices” on page 13-24.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
Point Grey Web site (www.ptgrey.com) to download the correct drivers.

Note If you are using a Point Grey camera that is a GigE Vision device, do
not try to use both the Point Grey adaptor and the GigE Vision adaptor at the
same time. You should use the Point Grey adaptor.

Note For use of the Bumblebee 2 cameras, certain video formats may be
suppressed. To see the available video formats for your Bumblebee camera,
open the Image Acquisition Tool and check the format list shown in the
Hardware Browser under your device node.

Determining the Driver Version for Point Grey Devices
To determine the Point Grey driver version you are using, run the Point Grey
FlyCapture utility.

to see the driver version number.

1 Select Start > Programs > Point Grey Research > FlyCapture2 >
FlyCap2 to open FlyCapture.

13-24

http://www.mathworks.com/products/imaq
http://www.ptgrey.com/

Point Grey Hardware

2 In FlyCapture, select Settings > Toggle Camera Control Dialog.

3 In the Control dialog, select Camera Information. The driver version is
included in the information that is displayed there.

13-25

13 Troubleshooting

GigE Vision Hardware

In this section...

“Troubleshooting GigE Vision Devices on Windows” on page 13-26

“Troubleshooting GigE Vision Devices on Linux” on page 13-29

“Troubleshooting GigE Vision Devices on Mac” on page 13-31

Troubleshooting GigE Vision Devices on Windows
If you are having trouble using the Image Acquisition Toolbox software with a
GigE Vision camera on a Windows machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaqhwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is configured correctly using
the imaqsupport function.

If your camera requires a GenICam XML file on a local drive (most
cameras do not), and the adaptor loads but no devices are shown, check
the MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you must uninstall it.

3 Make sure that anti-virus program drivers are unchecked in the Ethernet
card Properties.

For more information on this, see Step 3 in “Installation of GigE Vision
Cameras and Drivers on Windows” on page 9-4.

4 Make sure the Ethernet card is configured properly.

13-26

GigE Vision Hardware

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-4.

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must
specify the IP address for each card and each card must be on a different
subnet.

5 Test the connectivity of your device separate from using the Image
Acquisition Toolbox. Use the vendor program included with your device to
see if you can detect and acquire images from the camera.

6 If you receive an error message such as:

“Block 23 is being dropped because packets are unavailable for resend.”

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel® Core™ 2 Quad or
equivalent AMD®, you may experience this type of error.

If you have a slower computer and experience packet loss using the
GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

13-27

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

13 Troubleshooting

7 If you are able to start acquisition without error but do not receive any
frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support
jumbo frames, and also that your Ethernet card driver is set to allow them
at the size that you are attempting to use.

8 The toolbox attaches the block ID (frame ID) as metadata to the frame. If
your camera does not start a new acquisition at block 1, if you want to know
if you lost initial frames, you can check the metadata. If the first frame’s
block ID is not 1, you may have some missing frames. For example, use
this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imaqsupport function for further troubleshooting information.

13-28

GigE Vision Hardware

Troubleshooting GigE Vision Devices on Linux
If you are having trouble using the Image Acquisition Toolbox software with a
GigE Vision camera on a Linux machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaqhwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is configured correctly using
the imaqsupport function.

If your camera requires a GenICam XML file on a local drive (most
do not), and the adaptor loads but no devices are shown, check the
MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you should uninstall it.

3 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-4.

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must
specify the IP address for each card and each card must be on a different
subnet.

4 Examine the connectivity of your device separate from using the Image
Acquisition Toolbox. You may find using ping -b, arp, route, and
ifconfig helpful with this.

5 If you receive an error message such as:

“Block 23 is being dropped because packets are unavailable for resend”

13-29

13 Troubleshooting

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel Core 2 Quad or
equivalent AMD, you may experience this type of error.

If you have a slower computer and experience packet loss using the
GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

6 If you are able to start acquisition without error but do not receive any
frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support
jumbo frames, and also that your Ethernet interface is set to allow them at
the size that you are attempting to use.

7 If you receive an error that says a block or frame is being dropped because
a packet is unavailable for resend, one likely cause is that the buffer size of
the socket could not be set to the reported value, for example 1000000.

See your system administrator about using sysctl for net.core.rmem_max.
For example, the system administrator could try:

sysctl -w net.inet.udp.recvspace=1000000

8 If your camera does not start a new acquisition at block 1, the toolbox will
attach the block ID (frame ID) as metadata to the frame. If you want to

13-30

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

GigE Vision Hardware

know if you lost initial frames, you can check the metadata – if the first
frame’s block ID is not 1, you may have some missing frames. For example,
use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imaqsupport function for further troubleshooting information.

Troubleshooting GigE Vision Devices on Mac
If you are having trouble using the Image Acquisition Toolbox software with
a GigE Vision camera on a Mac machine, using the toolbox’s gige adaptor,
follow these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaqhwinfo command to list
installed adaptors. The gige adaptor should be included on the list.

If it does not load, make sure that GenICam is installed and the
environment variables exist. You can check this using the imaqsupport
function.

If your camera requires a GenICam XML file on a local drive (most
do not), and the adaptor loads but no devices are shown, check the
MWIMAQ_GENICAM_XML_FILES environment variable, and make sure it
contains the directory where your camera’s XML file is located.

For information on installing GenICam and checking your environment
variables, see “Software Configuration” on page 9-12.

2 Make sure you did not install your camera vendor’s filtering or performance
networking driver. If you did, you should uninstall it.

3 Make sure the Ethernet card is configured properly.

For more information on this, see “Network Hardware Configuration Notes”
on page 9-3 and “Network Adaptor Configuration Notes” on page 9-4.

Also, if you have multiple cameras connected to multiple Ethernet cards,
you cannot have them all set to automatic IP configuration. You must

13-31

13 Troubleshooting

specify the IP address for each card and each card must be on a different
subnet.

4 Examine the connectivity of your device separate from using the Image
Acquisition Toolbox. You may find using ping -b, arp, route, and
ifconfig helpful with this.

5 If you receive an error message such as:

“Block 23 is being dropped because packets are unavailable for resend”

and it does not mention buffer size, it is likely that packets are being
dropped due to overload of the CPU. To lower the CPU load, raise the value
of the PacketSize device-specific (source) property. In order to do this,
you must be using hardware that supports jumbo frames.

You might also want to calculate and set the PacketDelay device-specific
(source) property.

Also, if you are using a CPU that is older than an Intel Core 2 Quad or
equivalent AMD, you may experience this type of error.

If you have a slower computer and experience packet loss using the
GigE Vision adaptor, you can set a packet delay to avoid overloading the
computer. This is useful in solving the performance issue if you cannot
achieve your camera’s frame rate. The PacketDelay property will initially
be set to use the value that is your camera’s default value. You can then
adjust the value if needed. The TimeStampTickFrequency property is
read-only but is available for calculating the actual packet delay value is
being used.

For more information on the new PacketDelay property and how to
calculate packet delay, see this solution:

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

6 If you are able to start acquisition without error but do not receive any
frames, and if you are using a larger PacketSize, make sure that your
hardware and the network between the computer and the camera support
jumbo frames, and also that your Ethernet interface is set to allow them at
the size that you are attempting to use.

13-32

http://www.mathworks.com/support/solutions/en/data/1-F36R0R/index.html

GigE Vision Hardware

7 If you receive an error that says a block or frame is being dropped because
a packet is unavailable for resend, one likely cause is that the buffer size of
the socket could not be set to the reported value, for example 1000000.

See your system administrator about using sysctl for net.core.rmem_max.
For example, the system administrator could try:

sysctl -w net.inet.udp.recvspace=1000000

8 If your camera does not start a new acquisition at block 1, the toolbox will
attach the block ID (frame ID) as metadata to the frame. If you want to
know if you lost initial frames, you can check the metadata – if the first
frame’s block ID is not 1, you may have some missing frames. For example,
use this command in MATLAB:

[d t m]=getdata(vid,2);
m(1)

The answer will include the Block ID and the FrameNumber.

9 Run the imaqsupport function for further troubleshooting information.

13-33

13 Troubleshooting

GenICam GenTL Hardware

Troubleshooting GenICam GenTL Hardware
If you are having trouble using the Image Acquisition Toolbox software with
a GenICam GenTL camera driver using the toolbox’s gentl adaptor, follow
these troubleshooting steps:

1 Verify that the adaptor loads. You can use the imaqhwinfo command to list
installed adaptors. The gentl adaptor should be included on the list.

If it does not load, make sure that GenICam is configured correctly using
the imaqsupport function.

For information on installing GenICam, see “Software Configuration” on
page 9-12.

2 Make sure your camera’s driver is installed.

3 Make sure your environment variables are set. For example, depending
on the GenTL producers you have installed, on a 32-bit Windows system,
it could be something like:

GENICAM_GENTL32_PATH=C:\Program Files\LeutronVision\Simplon\bin\cti;C:\Program

Files\MATRIX VISION\mvIMPACT acquire\bin;C:\XIMEA\GenTL Producer\x86

4 Each directory that you list in the environment variables must contain
a DLL file that has a .cti extension and that exports the standard C
functions that are expected for a GenTL producer. The Image Acquisition
Toolbox gentl adaptor scans these directories for all the CTI files and then
checks whether they export the correct minimum set of functions.

5 Test the connectivity of your device separate from using the Image
Acquisition Toolbox. Use the vendor program included with your device to
see if you can detect and acquire images from the camera.

6 If you are using the GenICam GenTL adaptor with a GigE Vision camera,
it may be the case that the producers for GigE Vision cameras do not send
a ForceIP command and so sometimes after plugging in a new camera, it
will not be found. Using the toolbox’s gige adaptor first can resolve this.

13-34

GenICam GenTL Hardware

7 You can also look at producers in other vendor software.

For example, Leutron Vision uses a program called Simplon Explorer.
Using this program you can see what producers are installed and what
cameras are connected. You can double-click on a camera within the
Simplon Explorer to control it.

Note that with Matrix Vision, if a device is configured for DirectShow,
it will not be available to GenTL.

8 Run the imaqsupport function for further troubleshooting information.

13-35

13 Troubleshooting

Windows Video Hardware

In this section...

“Troubleshooting Windows Video Devices” on page 13-36

“Determining the Microsoft® DirectX® Version” on page 13-37

Troubleshooting Windows Video Devices
If you are having trouble using the Image Acquisition Toolbox software with
a supported Windows video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

For Windows devices, run the application that came with your hardware
and verify that you can receive live video.

You can also verify your hardware by running the detectDevices
utility provided on the MathWorks Supported Hardware Web page:
http://www.mathworks.com/products/imaq/supportedioWindows.html.
Under “Supported Hardware – Operating System – Windows,” on this page,
click the link that says download and run the detectDevices utility
to install the utility.

If you can run the utility without encountering any errors, the toolbox
should be able to operate with your image acquisition device. If you
encounter errors, resolve them before attempting to use the toolbox with
the device.

2 If your hardware is functioning properly, verify that you are using
hardware device drivers that are compatible with the toolbox.

• Find out the driver version you are using on your system. The Image
Acquisition Toolbox software is only compatible with WDM (Windows
Driver Model) or VFW (Video for Windows) drivers. Contact the
hardware manufacturer to determine if the driver provided with your
hardware conforms to these driver classes.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of

13-36

http://www.mathworks.com/products/imaq/supportedioWindows.html

Windows® Video Hardware

supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

If you discover that you are using an unsupported driver version, visit the
hardware manufacturer’s Web site for the correct drivers.

Note The Windows Video driver is a generic interface and should only
be used if you do not have a more specific driver to use with your device.
For example, use the device-specific driver if your device has one. If your
device is a DCAM or FireWire device, use the DCAM driver. Only use the
Windows Video driver if there is no more specific option for your device.

3 Make sure you have the correct version of Microsoft DirectX installed on
your computer. The Image Acquisition Toolbox software is only compatible
with specific versions of the Microsoft DirectX multimedia technology and
is not guaranteed to work with any other versions.

• Find out which driver version you are using on your system. To learn
how to get this information, see “Determining the Microsoft® DirectX®

Version” on page 13-37.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct version information, check the
Image Acquisition Toolbox product page at the MathWorks Web site
(www.mathworks.com/products/imaq).

If you discover that you are using an unsupported version, visit the
Microsoft DirectX Web site (www.microsoft.com/directx/) for the correct
version of DirectX.

Determining the Microsoft DirectX Version
To determine the version of Microsoft DirectX you are using, run the DirectX
Diagnostic Tool. You can access this software through the Windows Start
button.

Select Start > Run.

In the Run dialog box, launch the DirectX Diagnostic Tool by opening the
dxdiag program.

13-37

http://www.mathworks.com/products/imaq
http://www.mathworks.com/products/imaq
http://www.microsoft.com/directx/

13 Troubleshooting

In the DirectX Diagnostic Tool, the Microsoft DirectX version is listed on the
System tab under the System Information section.

DirectX® Diagnostic Tool

13-38

Linux® Video Hardware

Linux Video Hardware

Troubleshooting Linux Video Devices
If you have trouble using the Image Acquisition Toolbox software with
a supported Linux Video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware functions properly and that
you have permission to access it.

Be sure that your system and login have the proper permissions to access
the hardware. See your system administrator if you need help.

You can verify that your hardware functions properly by running the
WebCam application that came with your Linux distribution, for example,
Cheese or Camorama.

If you can start the utility, run the utility, and close it without encountering
any errors, the toolbox should be able to operate with your image
acquisition device. If you encounter errors, resolve them before attempting
to use the toolbox with the device.

2 If your hardware is functioning properly, verify that you are using
hardware device drivers that are compatible with the toolbox.

• Determine the driver version you are using on your system. The Image
Acquisition Toolbox software is only compatible with Video 4 Linux 2
drivers. It is not supported for Video 4 Linux 1. (You may be able to get
it to work – see the next step.) Contact the hardware manufacturer to
determine if the driver provided with your hardware conforms to these
driver classes.

• Verify that the version is compatible with the Image Acquisition
Toolbox software. For the correct driver information, check the list of
supported drivers on the Image Acquisition Toolbox product page at the
MathWorks Web site (www.mathworks.com/products/imaq).

3 The Linux Video adaptor only supports Video 4 Linux 2 compatible devices.
However, there is a library that might make Video 4 Linux 1 devices work
with the toolbox. The libv4l package provides a library that provides

13-39

http://www.mathworks.com/products/imaq

13 Troubleshooting

compatibility between the different versions of Video 4 Linux. To try this,
start MATLAB with the following command:

LD_PRELOAD=/usr/lib/libv4l/v4l1compat.so matlab

then the Linux Video adaptor may be able to detect your V4L1 hardware.
The path to the v4l1compat.so library might vary depending on the Linux
distribution. If the above command works, you can add a command similar
to:

export LD_PRELOAD=/usr/lib/libv4l/v4l1compat.so

to /etc/profile or another persistent configuration file.

Note The Linux Video driver is a generic interface and you should only use it
if you do not have a more specific driver to use with your device. If your device
is a DCAM or FireWire device, use the DCAM driver. Only use the Linux
Video driver if there is no more specific option for your device.

13-40

Linux® DCAM IEEE® 1394 Hardware

Linux DCAM IEEE 1394 Hardware

Troubleshooting Linux DCAM Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported Linux DCAM IEEE 1394 hardware acquisition device, follow these
recommended troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

• Make sure the camera is compliant with the IIDC 1394-based
Digital Camera (DCAM) specification. Vendors typically include this
information in documentation or data sheet that comes with the camera.
If your digital camera is not DCAM compliant, you should be able to use
the Linux Video adaptor.

2 Verify that your image acquisition hardware is functioning properly and
that you have permission to access it.

Be sure that your system and log-in have the proper permissions to access
the hardware. See your system administrator if you need help.

You can verify that your hardware is functioning properly by running
Coriander. See your system administrator if you need help installing
Coriander.

If you can start the utility, run the utility, and close the utility without
encountering any errors, the toolbox should be able to operate with your
image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

3 To use DCAM on Linux, you need to have installed the libdc1394-22
package, as well as the libraw1394-11.

13-41

13 Troubleshooting

Macintosh Video Hardware

Troubleshooting Macintosh Video Devices
If you are having trouble using the Image Acquisition Toolbox software with
a supported Macintosh video acquisition device, follow these recommended
troubleshooting steps:

1 Verify that your image acquisition hardware is functioning properly.

You can verify that your hardware is functioning properly by running the
WebCam application that came with OSX, for example, Photo Booth or
iMovie.

If you can start the utility, run the utility, and close the utility without
encountering any errors, then the toolbox should be able to operate with
your image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

2 Verify that you can access your device through the Macintosh Video
Adaptor.

• Make sure the camera complies with QuickTime.

Note The Macintosh Video Adaptor is a generic interface and should only
be used if you do not have a more specific adaptor to use with your device.
If your device is a DCAM or FireWire device, use the DCAM adaptor.
Only use the Macintosh Video Adaptor if there is no more specific option
for your device.

3 Make sure you have QuickTime installed on your computer. If you do not
have it installed, you can download it.

13-42

Macintosh DCAM IEEE® 1394 Hardware

Macintosh DCAM IEEE 1394 Hardware

Troubleshooting Macintosh DCAM Devices
If you are having trouble using the Image Acquisition Toolbox software with a
supported Macintosh DCAM IEEE 1394 hardware acquisition device, follow
these recommended troubleshooting steps:

1 Verify that your IEEE 1394 (FireWire) camera can be accessed through
the dcam adaptor.

• Make sure the camera complies with the IIDC 1394-based Digital
Camera (DCAM) specification. Vendors typically include this
information in documentation that comes with the camera. If your
digital camera is not DCAM compliant, you might be able to use the
Macintosh Video Adaptor.

2 Verify that your image acquisition hardware is functioning properly.

You can verify that your hardware is functioning properly by running an
external webcam application, for example, Photo Booth or iMovie.

If you can start the utility, run the utility, and close the utility without
encountering any errors, then the toolbox should be able to operate with
your image acquisition device. If you encounter errors, resolve them before
attempting to use the toolbox with the device.

13-43

13 Troubleshooting

Video Preview Window Troubleshooting
When previewing the video stream, if you encounter a problem, try one of
the following solutions.

Problem Possible Solutions

Video Preview window stops
running.

• Close the preview window and reopen it.

• Verify that your image acquisition device
is working properly. Close MATLAB and
run the application that came with your
device.

• Make sure no other application is using
the device.

Video Preview window
displays blank, gray
window.

• Close the preview window and reopen it.

• Check memory usage. It is possible that
there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imaqmem
function and specify a higher value for the
FrameMemoryLimit.

• Make sure no other application is using
the device.

Video Preview window
displays dropped frames
message.

• Close the preview window and reopen it.

• Check memory usage. It is possible that
there is not enough memory available for
the incoming image data. To increase
the memory allocation, use the imaqmem
function and specify a higher value for the
FrameMemoryLimit.

13-44

Contacting MathWorks and Using the imaqsupport Function

Contacting MathWorks and Using the imaqsupport
Function

If you need support from MathWorks, visit our Web site at
http://www.mathworks.com/support/.

Before contacting MathWorks, you should run the imaqsupport function.
This function returns diagnostic information such as:

• The versions of MathWorks products you are using

• Your MATLAB path

• The characteristics of your hardware

• Information about your adaptors

The output from imaqsupport is automatically saved to a text file,
imaqsupport.txt, which you can use to help troubleshoot your problem.

To have MATLAB generate this file for you, type

imaqsupport

13-45

http://www.mathworks.com/support/

13 Troubleshooting

13-46

14

Functions — Alphabetical
List

clear

Purpose Clear image acquisition object from MATLAB workspace

Syntax clear obj

Description clear obj removes the image acquisition object obj from the MATLAB
workspace. obj can be either a video input object or a video source
object.

It is important to note that if you clear a video input object that is
running (the Running property is set to 'on'), the object continues
executing.

You can restore cleared objects to the MATLAB workspace with the
imaqfind function.

To remove an image acquisition object from memory, use the delete
function.

See Also delete | imaqfind | isvalid

14-2

closepreview

Purpose Close Video Preview window

Syntax closepreview(obj)
closepreview

Description closepreview(obj) stops the image acquisition object obj from
previewing and, if the default Video Preview window was used, closes
the window.

closepreview stops all image acquisition objects from previewing and,
for all image acquisition objects that used the default Video Preview
window, closes the windows.

Note that if the preview window was created with a user-specified
image object handle as the target, closepreview does not close the
figure window.

See Also preview | stoppreview

14-3

delete

Purpose Remove image acquisition object from memory

Syntax delete(obj)

Description delete(obj) removes obj, an image acquisition object or array of
image acquisition objects, from memory. Use delete to free memory at
the end of an image acquisition session.

If obj is an array of image acquisition objects and one of the objects
cannot be deleted, the delete function deletes the objects that can be
deleted and returns a warning.

When obj is deleted, it becomes invalid and cannot be reused. Use
the clear command to remove invalid image acquisition objects from
the MATLAB workspace.

If multiple references to an image acquisition object exist in the
workspace, deleting the image acquisition object invalidates the
remaining references. Use the clear command to delete the remaining
references to the object from the workspace.

If the image acquisition object obj is running or being previewed, the
delete function stops the object and closes the preview window before
deleting it.

Examples Create a video object, preview the object, then delete the object:

vid = videoinput('winvideo', 1);
preview(vid);
delete(vid);

See Also imaqfind | isvalid | videoinput

14-4

disp

Purpose Display method for image acquisition objects

Syntax obj
disp(obj)

Description obj displays summary information for image acquisition object obj.

disp(obj) displays summary information for image acquisition object
obj.

If obj is an array of image acquisition objects, disp outputs a table of
summary information about the image acquisition objects in the array.

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating an image acquisition object, using the videoinput function

• Configuring property values using the dot notation

Examples This example illustrates the summary display of a video input object.

vid = videoinput('winvideo')

14-5

disp

This example shows the summary information displayed for an array of
video input objects.

vid2 = videoinput('winvideo');

[vid vid2]

Video Input Object Array:

Index: Type: Name:
1 videoinput RGB555_128x96-winvideo-1
2 videoinput RGB555_128x96-winvideo-1

See Also videoinput

14-6

flushdata

Purpose Remove data from memory buffer used to store acquired image frames

Syntax flushdata(obj)
flushdata(obj,mode)

Description flushdata(obj) removes all the data from the memory buffer used to
store acquired image frames. obj can be a single video input object
or an array of video input objects.

flushdata(obj,mode) removes all the data from the memory buffer
used to store acquired image frames, where mode can have either of
the following values:

Mode Description

'all' Removes all the data from the memory buffer and
sets the FramesAvailable property to 0 for the video
input object obj. This is the default mode when none
is specified, flushdata(obj).

'triggers' Removes data from the memory buffer that was
acquired during the oldest trigger executed.
TriggerRepeat must be greater than 0 and
FramesPerTrigger must not be set to inf.

See Also getdata | imaqhelp | peekdata | propinfo | videoinput

14-7

get

Purpose Return image acquisition object properties

Syntax get(obj)
V = get(obj)
V = get(obj,PropertyName)

Description get(obj) displays all property names and their current values for
image acquisition object obj.

V = get(obj) returns a structure, V, in which each field name is the
name of a property of obj and each field contains the value of that
property.

V = get(obj,PropertyName) returns the value of the property
specified by PropertyName for image acquisition object obj. Use the
get(obj) syntax to view a list of all the properties supported by a
particular image acquisition object.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing
property names, V is a 1-by-N cell array of values. If obj is a vector of
image acquisition objects, V is an M-by-N cell array of property values
where M is equal to the length of obj and N is equal to the number of
properties specified.

Examples Create video object, then get values of two frame-related properties,
then display all proprieties of the object:

vid = videoinput('matrox', 1);
get(vid, {'FramesPerTrigger','FramesAcquired'})
out = get(vid, 'LoggingMode')
get(vid);

See Also set | videoinput

14-8

getdata

Purpose Acquired image frames to MATLAB workspace

Syntax data = getdata(obj)
data = getdata(obj,n)
data = getdata(obj,n,type)
data = getdata(obj,n,type,format)
[data,time] = getdata(...)
[data, time, metadata] = getdata(...)

Description data = getdata(obj) returns data, which contains the number of
frames specified in the FramesPerTrigger property of the video input
object obj. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

W Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the NumberOfBands
property

F The number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imaqmontage to view multiple frames at once.

data = getdata(obj,n) returns n frames of data associated with the
video input object obj.

data = getdata(obj,n,type) returns n frames of data associated with
the video input object obj, where type is one of the text strings in the
following table that specify the data type used to store the returned
data.

14-9

getdata

Type String Data Type

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer

'uint32' Unsigned 32-bit integer

'single' Single precision

'double' Double precision

'native' Uses native data type. This is the default.

If type is not specified, 'native' is used as the default. If there is no
MATLAB data type that matches the object’s native data type, getdata
chooses a MATLAB data type that preserves numerical accuracy.
For example, the components of 12-bit RGB color data would each be
returned as uint8 data.

data = getdata(obj,n,type,format) returns n frames of data
associated with the video input object obj, where format is one of the
text strings in the following table that specify the MATLAB format
of data.

Format
String Description

'numeric' Returns data as an H-by-W-by-B-by-F array. This is
the default format if none is specified.

'cell' Returns data as an F-by-1 cell array of H-by-W-by-B
matrices

[data,time] = getdata(...) returns time, an F-by-1 matrix, where
F is the number of frames returned in data. Each element of time
indicates the relative time, in seconds, of the corresponding frame in
data, relative to the first trigger.

time = 0 is defined as the point at which data logging begins. When
data logging begins, the object’s Logging property is set to 'On'. time
is measured continuously with respect to 0 until the acquisition stops.

14-10

getdata

When the acquisition stops, the object’s Running property is set to
'Off'.

[data, time, metadata] = getdata(...) returns metadata, an
F-by-1 array of structures, where F is the number of frames returned
in data. Each structure contains information about the corresponding
frame in data. The metadata structure contains these fields:

Metadata Field Description

'AbsTime' Absolute time the frame was acquired, expressed
as a time vector

'FrameNumber' Number identifying the nth frame since the
start command was issued

'RelativeFrame' Number identifying the nth frame relative to the
start of a trigger

'TriggerIndex' Number of the trigger in which this frame was
acquired

In addition to the fields in the above table, some adaptors may choose to
add other adaptor-specific metadata as well.

getdata is a blocking function that returns execution control to the
MATLAB workspace after the requested number of frames becomes
available within the time period specified by the object’s Timeout
property. The object’s FramesAvailable property is automatically
reduced by the number of frames returned by getdata. If the requested
number of frames is greater than the frames to be acquired, getdata
returns an error.

It is possible to issue a Ctrl+C while getdata is blocking. This does not
stop the acquisition but does return control to MATLAB.

Examples Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

14-11

getdata

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

Display each image frame acquired.

imaqmontage(data);

Remove the video input object from memory.

delete(obj);

See Also getsnapshot | imaqhelp | imaqmontage | peekdata | propinfo

14-12

getselectedsource

Purpose Return currently selected video source object

Syntax src = getselectedsource(obj)

Description src = getselectedsource(obj) searches all the video source objects
associated with the video input object obj and returns the video source
object, src, that has the Selected property value set to 'on'.

To select a source for acquisition, use the SelectedSourceName property
of the video input object.

obj must be a 1-by-1 video input object.

See Also imaqhelp | get | videoinput

14-13

getsnapshot

Purpose Immediately return single image frame

Syntax frame = getsnapshot(obj)
[frame, metadata] = getsnapshot(obj)

Description frame = getsnapshot(obj) immediately returns one single image
frame, frame, from the video input object obj. The frame of data
returned is independent of the video input object FramesPerTrigger
property and has no effect on the value of the FramesAvailable or
FramesAcquired property.

The object obj must be a 1-by-1 video input object.

frame is returned as an H-by-W-by-B matrix where

H Image height, as specified in the ROIPosition property

W Image width, as specified in the ROIPosition property

B Number of bands associated with obj, as specified in the
NumberOfBands property

frame is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc function to view the
returned data.

[frame, metadata] = getsnapshot(obj) returns metadata, a 1-by-1
array of structures. This structure contains information about the
corresponding frame. The metadata structure contains the field
AbsTime, which is the absolute time the frame was acquired, expressed
as a time vector. In addition to that field, some adaptors may choose to
add other adaptor-specific metadata as well.

Note If obj is running but not logging, and has been configured with a
hardware trigger, a timeout error will occur.

14-14

getsnapshot

To interrupt the getsnapshot function and return control to the
MATLAB command line, issue the ^C (Ctrl+C) command.

Examples Create a video input object.

obj = videoinput('matrox', 1);

Acquire and display a single frame of data.

frame = getsnapshot(obj);
image(frame);

Remove the video input object from memory.

delete(obj);

For an example of using getsnapshot, see the Image Acquisition
Toolbox example Acquiring a Single Image in a Loop in the
Examples list at the top of the Image Acquisition Toolbox main
Documentation Center page, or open the file demoimaq_GetSnapshot.m
in the MATLAB Editor.

See Also getdata | imaqhelp | peekdata

14-15

imaqfind

Purpose Find image acquisition objects

Syntax imaqfind
out = imaqfind
out = imaqfind(PropertyName, Value, PropertyName2, Value2,

...)
out = imaqfind(S)
out = imaqfind(obj, PropertyName, Value, PropertyName2,

Value2,...)

Description imaqfind returns an array containing all the video input objects that
exist in memory. If only a single video input object exists in memory,
imaqfind displays a detailed summary of that object.

out = imaqfind returns an array, out, of all the video input objects
that exist in memory.

out = imaqfind(PropertyName, Value, PropertyName2, Value2,
...) returns a cell array, out, of image acquisition objects whose
property names and property values match those passed as arguments.
You can specify the property name/property value pairs in a cell array.
You can use a mixture of strings, structures, and cell arrays. Use the
get function to determine the list of properties supported by an image
acquisition object.

out = imaqfind(S) returns a cell array, out, of image acquisition
objects whose property values match those defined in the structure S.
The field names of S are image acquisition object property names and
the field values are the requested property values.

out = imaqfind(obj, PropertyName, Value, PropertyName2,
Value2,...) restricts the search for matching parameter/value pairs
to the image acquisition objects listed in obj. obj can be an array of
image acquisition objects.

14-16

imaqfind

Note When searching for properties with specific values, imaqfind
performs case-sensitive searches. For example, if the value of an object’s
Name property is 'MyObject', imaqfind does not find a match if you
specify 'myobject'. Note, however, that searches for properties that
have an enumerated list of possible values are not case sensitive. For
example, imaqfind will find an object with a Running property value of
'Off' or 'off'. Use the get function to determine the exact spelling
of a property value.

Examples To illustrate various imaqfind syntaxes, first create two video input
objects.

obj1 = videoinput('matrox',1,'M_RS170','Tag','FrameGrabber');
obj2 = videoinput('winvideo',1,'RGB24_320x240','Tag','Webcam');

Now use imaqfind to find these objects by type and tag.

out1 = imaqfind('Type', 'videoinput')
out2 = imaqfind('Tag', 'FrameGrabber')
out3 = imaqfind({'Type', 'Tag'}, {'videoinput', 'Webcam'})

See Also get | videoinput

14-17

imaqhelp

Purpose Image acquisition object function and property help

Syntax imaqhelp
imaqhelp(Name)
imaqhelp(obj)
imaqhelp(obj,Name)
out = imaqhelp(...)

Description imaqhelp provides a complete listing of image acquisition object
functions.

imaqhelp(Name) provides online help for the function or property
specified by the text string Name.

imaqhelp(obj) displays a listing of functions and properties for the
image acquisition object obj along with the online help for the object’s
constructor. obj must be a 1-by-1 image acquisition object.

imaqhelp(obj,Name) displays the help for the function or property
specified by the text string Name for the image acquisition object obj.

If Name is a device-specific property name, obj must be provided.

out = imaqhelp(...) returns the help text in string out.

When property help is displayed, the names in the “See Also” section
that contain all uppercase letters are function names. The names that
contain a mixture of upper- and lowercase letters are property names.

When function help is displayed, the “See Also” section contains only
function names.

Examples Getting general function and property help.

imaqhelp('videoinput')
out = imaqhelp('videoinput');
imaqhelp set
imaqhelp LoggingMode

Getting property help with device-specific information.

14-18

imaqhelp

vid = videoinput('dt', 1);
src = getselectedsource(vid);
imaqhelp(vid, 'TriggerType')
imaqhelp(src, 'FrameRate')

See Also propinfo

14-19

imaqhwinfo

Purpose Information about available image acquisition hardware

Syntax out = imaqhwinfo
out = imaqhwinfo(adaptorname)
out = imaqhwinfo(adaptorname,field)
out = imaqhwinfo(adaptorname, deviceID)
out = imaqhwinfo(obj)
out = imaqhwinfo(obj,field)

Description out = imaqhwinfo returns out, a structure that contains information
about the image acquisition adaptors available on the system. An
adaptor is the interface between MATLAB and the image acquisition
devices connected to the system. The adaptor’s main purpose is to pass
information between MATLAB and an image acquisition device via its
driver.

out = imaqhwinfo(adaptorname) returns out, a structure that
contains information about the adaptor specified by the text string
adaptorname. The information returned includes adaptor version and
available hardware for the specified adaptor. To get a list of valid
adaptor names, use the imaqhwinfo syntax.

out = imaqhwinfo(adaptorname,field) returns the value of the field
specified by the text string field for the adaptor specified by the text
string adaptorname. The argument can be a single string or a cell array
of strings. If field is a cell array, out is a 1-by-n cell array where
n is the length of field. To get a list of valid field names, use the
imaqhwinfo('adaptorname') syntax.

out = imaqhwinfo(adaptorname, deviceID) returns out, a structure
containing information about the device specified by the numeric device
ID deviceID. The deviceID can be a scalar or a vector. If deviceID is a
vector, out is a 1-by-n structure array where n is the length of deviceID.

out = imaqhwinfo(obj) returns out, a structure that contains
information about the specified image acquisition object obj. The
information returned includes the adaptor name, device name, video
resolution, native data type, and device driver name and version. If obj

14-20

imaqhwinfo

is an array of device objects, then out is a 1-by-n cell array of structures
where n is the length of obj.

out = imaqhwinfo(obj,field) returns the information in the field
specified by field for the device object obj. field can be a single field
name or a cell array of field names. out is an m-by-n cell array where m
is the length of obj and n is the length of field. You can return a list of
valid field names with the imaqhwinfo(obj) syntax.

Note After you call imaqhwinfo once, hardware information is cached
by the toolbox. To force the toolbox to search for new hardware that
might have been installed while MATLAB was running, use imaqreset.

Examples This example returns information about all the adaptors available on
the system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

This example returns information about all the devices accessible
through a particular adaptor.

info = imaqhwinfo('winvideo')
info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

14-21

imaqhwinfo

This example returns information about a specific device accessible
through a particular adaptor. You identify the device by its device ID.

dev_info = imaqhwinfo('winvideo', 1)

dev_info =

DefaultFormat: 'RGB555_128x96'
DeviceFileSupported: 0

DeviceName: 'IBM PC Camera'
DeviceID: 1

VideoInputConstructor: 'videoinput('winvideo', 1)'
VideoDeviceConstructor: 'imaq.VideoDevice('winvideo', 1)'

SupportedFormats: {1x34 cell}

This example gets information about the device associated with a
particular video input object.

obj = videoinput('winvideo', 1);

obj_info = imaqhwinfo(obj)

obj_info =

AdaptorName: 'winvideo'
DeviceName: 'IBM PC Camera'
MaxHeight: 96
MaxWidth: 128

NativeDataType: 'uint8'
TotalSources: 1

VendorDriverDescription: 'Windows WDM Compatible Driver'
VendorDriverVersion: 'DirectX 9.0'

This example returns the value of a particular field in the device
information associated with a particular video input object.

field_info = imaqhwinfo(vid,'adaptorname')
field_info =

14-22

imaqhwinfo

winvideo

See Also imaqhelp | imaqreset

14-23

imaqmem

Purpose Limit memory or display memory usage for Image Acquisition Toolbox
software

Syntax mem = imaqmem
imaqmem(field)
imaqmem(limit)

Description mem = imaqmem returns a structure containing the following fields:

Field Description

MemoryLoad Number between 0 and 100 that gives a general
idea of current memory utilization.

TotalPhys Total number of bytes of physical memory.

AvailPhys Number of bytes of physical memory currently
available.

TotalPageFile Total number of bytes that can be stored in the
paging file.

AvailPageFile Number of bytes available in the paging file.

TotalVirtual Total number of bytes that can be addressed
in the user mode portion of the virtual address
space. This is a Windows only property.

AvailVirtual Number of bytes of unreserved and uncommitted
memory in the user mode portion of the virtual
address space. This is a Windows only property.

FrameMemoryLimit Total number of bytes image acquisition frames
can occupy in memory.

By default, the toolbox sets this limit to equal
all available physical memory at the time the
toolbox is first used or queried.

FrameMemoryUsed Number of bytes currently allocated by the Image
Acquisition Toolbox software.

14-24

imaqmem

imaqmem(field) returns information for the field specified by the text
string field.

imaqmem(limit) configures the frame memory limit, in bytes, for the
Image Acquisition Toolbox software. limit is used to determine the
maximum amount of memory the toolbox can use for logging image
frames.

Note Configuring the frame memory limit does not remove any logged
frames from the image acquisition memory buffer. To remove frames
from the buffer, you can bring them into the MATLAB workspace,
using the getdata function, or remove them from memory, using the
flushdata function.

Examples Use imaqmem to get information about system memory.

imaqmem

ans =

MemoryLoad: 85
TotalPhys: 263766016
AvailPhys: 37306368

TotalPageFile: 643878912
AvailPageFile: 391446528
TotalVirtual: 2.1474e+009
AvailVirtual: 1.6307e+009

FrameMemoryLimit: 38313984
FrameMemoryUsed: 0

Retrieve information about a specific field returned by imaqmem.

memlimit = imaqmem('FrameMemoryLimit')

memlimit =

14-25

imaqmem

38313984

Specify the amount of memory available for the toolbox to log image
frames (FrameMemoryLimit).

imaqmem(30000000)

ans =

MemoryLoad: 85
TotalPhys: 263766016
AvailPhys: 37634048

TotalPageFile: 643878912
AvailPageFile: 391479296
TotalVirtual: 2.1474e+009
AvailVirtual: 1.6307e+009

FrameMemoryLimit: 30000000
FrameMemoryUsed: 0

See Also flushdata | getdata | videoinput

14-26

imaqmontage

Purpose Sequence of image frames as montage

Syntax imaqmontage(frames)
imaqmontage(obj)
imaqmontage(...,CLIM)
imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT)
h = imaqmontage(...)

Description imaqmontage(frames) displays a montage of image frames in a
MATLAB figure window using the imagesc function.

frames can be any data set returned by getdata, peekdata, or
getsnapshot.

imaqmontage(obj) calls the getsnapshot function on video input object
obj and displays a single image frame in a MATLAB figure window
using the imagesc function. obj must be a 1-by-1 video input object.

imaqmontage(...,CLIM) displays a montage of image frames, where
CLIM is a two-element vector, [CLOW CHIGH], specifying the image
scaling. Use CLIM to specify a scaling value when overscaling the image
data is a risk, for example, when you are working with devices that
provide data in a 12-bit format.

imaqmontage(..., 'CLim', CLIM, 'Parent', PARENT) where CLIM is
as noted previously, and PARENT is a valid AXES object that allows you
to specify where the montage is displayed. One or both property/value
pairs can be specified. See the example below.

h = imaqmontage(...) returns a handle to an image object.

Examples Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

14-27

imaqmontage

Create an axes object.

a = axes;

Display each image frame acquired on axes a.

imaqmontage(data, 'Parent', a);

Remove the video input object from memory.

delete(obj);

See Also getdata | getsnapshot | imaqhelp | peekdata

14-28

imaqreset

Purpose Disconnect and delete all image acquisition objects

Syntax imaqreset

Description imaqreset deletes any image acquisition objects that exist in memory
and unloads all adaptors loaded by the toolbox. As a result, the image
acquisition hardware is reset.

imaqreset is the image acquisition command that returns MATLAB to
the known state of having no image acquisition objects and no loaded
image acquisition adaptors.

You can use imaqreset to force the toolbox to search for new hardware
that might have been installed while MATLAB was running.

Note that imaqreset should not be called from any of the callbacks of a
videoinput object, such as the StartFcn or FramesAcquiredFcn.

See Also delete | videoinput

14-29

imaqtool

Purpose Launch Image Acquisition Tool

Syntax imaqtool
imaqtool(file)

Description imaqtool launches an interactive GUI to allow you to explore,
configure, and acquire data from your installed and supported image
acquisition devices.

The functionality of the Image Acquisition Toolbox software is available
in this desktop application. You connect directly to your hardware in
the tool and can preview and acquire image data. You can log the
data to MATLAB in several formats, and also generate an AVI file,
right from the tool.

The Image Acquisition Tool provides a desktop environment that
integrates a preview/acquisition area with Acquisition Parameters so
that you can change settings and see the changes dynamically applied
to your image data.

For complete information on how to use the Image Acquisition Tool, see
“Getting Started with the Image Acquisition Tool” on page 3-5.

imaqtool(file) starts the tool and then immediately reads an Image
Acquisition Tool configuration file, where file is the name of an
IAT-file that you previously saved.

This configuration file contains parameter settings that you save using
File > Save Configuration in the tool.

Tutorials • “Getting Started with the Image Acquisition Tool” on page 3-5

14-30

imaq.VideoDevice

Purpose Acquire one frame at a time from video device

Syntax obj = imaq.VideoDevice
obj = imaq.VideoDevice(adaptorname)
obj = imaq.VideoDevice(adaptorname, deviceid)
obj = imaq.VideoDevice(adaptorname, deviceid, format)
obj = imaq.VideoDevice(adaptorname, deviceid, format, P1, V1,

...)
frame = step(obj)
[frame metadata] = step(obj)

Description The VideoDevice System object allows single-frame image acquisition
and code generation from MATLAB. You use the imaq.VideoDevice
function to create the System object. It supports the same adaptors
and hardware that the videoinput object supports; however, it has
different functions and properties associated with it. For example, the
System object uses the step function to acquire single frames.

obj = imaq.VideoDevice creates a VideoDevice System object, obj,
that acquires images from a specified image acquisition device. When
you specify no parameters, by default, it selects the first available
device for the first adaptor returned by imaqhwinfo.

obj = imaq.VideoDevice(adaptorname) creates a VideoDevice
System object, obj, using the first device of the specified adaptorname.
adaptorname is a text string that specifies the name of the adaptor
used to communicate with the device. Use the imaqhwinfo function to
determine the adaptors available on your system.

obj = imaq.VideoDevice(adaptorname, deviceid) creates a
VideoDevice System object, obj, with the default format for specified
adaptorname and deviceid. deviceid is a numeric scalar value
that identifies a particular device available through the specified
adaptorname. Use the imaqhwinfo(adaptorname) syntax to determine
the devices available and corresponding values for deviceid.

obj = imaq.VideoDevice(adaptorname, deviceid, format) creates
a VideoDevice System object, obj, where format is a text string that

14-31

imaq.VideoDevice

specifies a particular video format supported by the device or a device
configuration file (also known as a camera file).

obj = imaq.VideoDevice(adaptorname, deviceid, format, P1,
V1, ...) Creates a VideoDevice System object, obj, with the specified
property values. If an invalid property name or property value is
specified, the object is not created.

Specifying properties at the time of object creation is optional. They
can also be specified after the object is created. See the table below
for a list of applicable properties.

frame = step(obj) acquires a single frame from the VideoDevice
System object, obj.

[frame metadata] = step(obj) acquires a single image frame from
the VideoDevice System object, obj, plus metadata from the Kinect for
Windows Depth sensor. You can return Kinect for Windows skeleton
data using the VideoDevice System object on the Kinect Depth sensor.
For information on how to do this, see “Kinect for Windows Metadata”
on page 11-7.

Properties You can specify properties at the time of object creation, or they can be
specified and changed after the object is created. Properties that can be
used with the VideoDevice System object include:

Property Description

Device Device from which to acquire images.
Specify the image acquisition device to
use to acquire a frame. It consists of the
device name, adaptor, and device ID. The
default device is the first device returned
by imaqhwinfo.

VideoFormat Video format to be used by the image
acquisition device.Specify the video format
to use while acquiring the frame. The
default value of VideoFormat is the default
format returned by imaqhwinfo for the

14-32

imaq.VideoDevice

Property Description

selected device. To specify a Video Format
using a device file, set the VideoFormat
property to 'From device file' This
option exists only if your device supports
device configuration files.

DeviceFile Name of file specifying video format. This
property is only visible when VideoFormat
is set to 'From device file'.

DeviceProperties Object containing properties specific to the
image acquisition device.

ROI Region-of-interest for acquisition. This
is set to the default ROI value for the
specified device, which is the maximum
resolution possible for the specified format.
You can change the value to change the
size of the captured image. The format
is 1-based, that is, it is specified in pixels
in a 1-by-4 element vector [x y width
height].Note that this differs from the
videoinput object, the Image Acquisition
Tool, and the From Video Device block, all
of which are 0-based.

HardwareTriggering Turn hardware triggering on/off. Set
this property to 'on' to enable hardware
triggering to acquire images. The property
is visible only when the device supports
hardware triggering.

TriggerConfiguration Specifies the trigger source and trigger
condition before acquisition. The triggering
condition must be met via the trigger source
before a frame is acquired. This property is
visible only when HardwareTriggering is
set to 'on'.

14-33

imaq.VideoDevice

Property Description

ReturnedColorSpace Specify the color space of the returned
image. The default value of the property
depends on the device and the video
format selected. Possible values are
{rgb|grayscale|YCbCr} when the default
returned color space for the device is
not grayscale. Possible values are
{rgb|grayscale|YCbCr|bayer} when the
default returned color space for the device
is grayscale

BayerSensorAlignment String indicating the 2x2 sensor alignment.
Specifies Bayer patterns returned by
hardware. Specify the sensor alignment
for Bayer demosaicing. The default value
of this property is 'grbg'. Possible values
are {grbg|gbrg|rggb|bggr}. Visible only if
ReturnedColorSpace is set to 'bayer'.

ReturnedDataType The returned data type of the acquired
frame. The default ReturnedDataType is
single.

The setting of properties for the System object supports tab completion
for enumerated properties while coding in MATLAB. Using the tab
completion is an easy way to see available property values. After you
type the property name, type a comma, then a space, then the first
quote mark for the value, then hit tab to see the possible values.

You can also use the set function with the object name and property
name to get a list of available values for that property. For example:

set(obj, 'ReturnedColorSpace')

gets the list of available color space settings for the VideoDevice System
object, obj.

14-34

imaq.VideoDevice

Note that once you have done a step, in order to change a property or set
a new one, you need to release the object using the release function,
before setting the new property.

Functions You can use these functions with the VideoDevice System object.

Function Purpose

step Acquire a single frame from the image acquisition
device.

frame = step(obj);

acquires a single frame from the VideoDevice
System object, obj.

Note that the first time you call step, it acquires
exclusive use of the hardware and will start
streaming data.

release Release VideoDevice resources and allow property
value changes.

release(obj)

releases system resources (such as memory, file
handles, or hardware connections) of System
object, obj, and allows all its properties and input
characteristics to be changed.

14-35

imaq.VideoDevice

Function Purpose

isLocked Returns a value that indicates if the VideoDevice
resource is locked. (Use release to unlock.)

L = isLocked(obj)

returns a logical value, L, which indicates whether
properties are locked for the System object, obj.
The object performs an internal initialization
the first time the step function is executed.
This initialization locks properties and input
specifications. Once this occurs, the isLocked
function returns a value of true.

preview Activate a live image preview window.

preview(obj)

creates a Video Preview window that displays live
video data for the VideoDevice System object, obj.
The Video Preview window displays the video data
at 100% magnification (one screen pixel represents
one image pixel). The size of the preview image is
determined by the value of the VideoDevice System
object ROI property. If not specified, it uses the
default resolution for the device.

14-36

imaq.VideoDevice

Function Purpose

closepreview Close live image preview window.

closepreview(obj)

closes the live preview window for VideoDevice
System object, obj.

imaqhwinfo Returns information about the object.

imaqhwinfo(obj)

displays information about the VideoDevice
System object, obj.

Examples Construct a VideoDevice System object associated with the Winvideo
adaptor with device ID of 1.

vidobj = imaq.VideoDevice('winvideo', 1);

Set an object-level property, such as ReturnedColorSpace. The syntax
for an object-level property is to use set on the object name, property
name, and property value.

set(vidobj, 'ReturnedColorSpace', 'grayscale');

Set a device-specific property, such as Brightness. The syntax for a
device-specific property is to use set with the DeviceProperties object
using dot notation, then the property name and property value.

set(vidobj.DeviceProperties, 'Brightness', 150);

Preview the image.

preview(vidobj)

Acquire a single frame.

14-37

imaq.VideoDevice

frame = step(vidobj);

Display the acquired frame.

imshow(frame)

Release the hardware resource.

release(vidobj);

Clear the VideoDevice System object.

clear vidobj;

14-38

islogging

Purpose Determine whether video input object is logging

Syntax bool = islogging(obj)

Description bool = islogging(obj) returns true if the video input object obj is
logging data, otherwise false. A video input object is logging if the
value of its Logging property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj.
If an object in obj is logging data, islogging sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, islogging returns an error.

Examples Create a video input object.

vid = videoinput('winvideo');

To put the video input object in a logging state, start acquiring data.
The example acquires 50 frames to increase the amount of time that
the object remains in logging state.

set(vid,'FramesPerTrigger',50)
start(vid)

When the call to the start function returns, and the object is still
acquiring data, use islogging to check the state of the object.

bool = islogging(vid)
bool =

1

Create a second video input object.

vid2 = videoinput('winvideo');

14-39

islogging

Start one of the video input objects again, such as vid, and use
islogging to determine which of the two objects is logging.

start(vid)
bool = islogging([vid vid2])

bool =

1 0

See Also isrunning | isvalid | videoinput | Logging | LoggingMode

14-40

isrunning

Purpose Determine whether video input object is running

Syntax bool = isrunning(obj)

Description bool = isrunning(obj) returns true if the video input object obj is
running, otherwise false. A video input object is running if the value of
its Running property is set to 'on'.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If an
object in obj is running, the isrunning function sets the corresponding
element in bool to true, otherwise false. If any of the video input
objects in obj is invalid, isrunning returns an error.

Examples Create a video input object, configure a manual trigger, and then start
the object. This puts the object in running state.

vid = videoinput('winvideo');
triggerconfig(vid,'manual')
start(vid)

Use isrunning to check the state of the object.

bool = isrunning(vid)
bool =

1

Create a second video input object.

vid2 = videoinput('winvideo');

Use isrunning to determine which of the two objects is running.

bool = isrunning([vid vid2])
bool =

1 0

See Also islogging | isvalid | start | stop | videoinput | Running

14-41

isvalid

Purpose Determine whether image acquisition object is associated with image
acquisition device

Syntax bool = isvalid(obj)

Description bool = isvalid(obj) returns true if the video input object obj is
valid, otherwise false. An object is an invalid image acquisition object
if it is no longer associated with any hardware; that is, the object was
deleted using the delete function. If this is the case, obj should be
cleared from the workspace.

If obj is an array of video input objects, bool is a logical array where
each element in bool represents the corresponding element in obj. If
an object in obj is valid, the isvalid function sets the corresponding
element in bool to true, otherwise false.

See Also delete | imaqfind | videoinput

14-42

load

Purpose Load image acquisition object into MATLAB workspace

Syntax load filename
load filename obj1 obj2 ...
S = load(filename,obj1,obj2,...)

Description load filename returns all variables from the MAT-file filename to
the MATLAB workspace.

load filename obj1 obj2 ... returns the specified image acquisition
objects (obj1, obj2, etc.) from the MAT-file specified by filename to
the MATLAB workspace.

S = load(filename,obj1,obj2,...) returns the structure S with
the specified image acquisition objects (obj1, obj2, etc.) from the
MAT-file filename. The field names in S match the names of the image
acquisition objects that were retrieved. If no objects are specified, then
all variables existing in the MAT-file are loaded.

Values for read-only properties are restored to their default values
when loaded. For example, the Running property is restored to 'off'.
Use propinfo to determine if a property is read only.

Examples obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'input1')
save fname obj
load fname
load('fname', 'obj');

See Also imaqhelp | propinfo | save

14-43

obj2mfile

Purpose Convert video input objects to MATLAB code

Syntax obj2mfile(obj,filename)
obj2mfile(obj,filename,syntax)
obj2mfile(obj,filename,syntax,mode)
obj2mfile(obj,filename,syntax,mode,reuse)

Description obj2mfile(obj,filename) converts the video input object obj into an
M-file with the name specified by filename. The M-file contains the
MATLAB code required to create the object and set its properties. obj
can be a single video input object or an array of objects.

The obj2mfile function simplifies the process of restoring an object
with specific property settings and can be used to create video input
objects. obj2mfile also creates and configures the video source object
associated with the video input object.

If filename does not specify an extension or if it has an extension
other than the MATLAB M-file extension (.m), obj2mfile appends .m
to the end of filename. To recreate obj, execute the M-file by calling
filename.

If the UserData property of the object is set, or if any of the callback
properties is set to a cell array or to a function handle, obj2mfile writes
the data stored in those properties to a MAT-file. obj2mfile gives the
MAT-file the same name as the M-file, but uses the .mat filename
extension. obj2mfile creates the MAT-file in the same directory as
the M-file.

Note obj2mfile does not restore the values of read-only properties.
For example, if an object is saved with a Logging property set to 'on',
the object is recreated with a Logging property set to 'off' (the default
value). Use the propinfo function to determine if a property is read
only.

14-44

obj2mfile

obj2mfile(obj,filename,syntax) converts obj to the equivalent
MATLAB code where syntax specifies how obj2mfile assigns values
to properties of the object. syntax can be either of the following text
strings. The default value is enclosed in braces ({}).

String Description

{'set'} obj2mfile uses the set function when specifying
property values.

'dot' obj2mfile uses subscripted assignment (dot
notation) when specifying property values.

obj2mfile(obj,filename,syntax,mode) converts obj to the
equivalent MATLAB code where mode specifies which properties are
configured. mode can be either of the following strings. The default
value is enclosed in braces ({}).

String Description

{'modified'} Configure writable properties that are not set to
their default values.

'all' Configure all writable properties. obj2mfile does
not restore the values of read-only properties.

Note that obj2mfile(obj,filename,mode) is a valid syntax. If the
syntax argument is not specified, obj2mfile uses the default value.

obj2mfile(obj,filename,syntax,mode,reuse) converts obj to the
equivalent MATLAB code where reuse specifies whether obj2mfile
searches for a reusable video input object or creates a new one. reuse
can be either of the following strings. The default value is enclosed in
braces ({}).

14-45

obj2mfile

String Description

{'reuse'} Find and modify an existing object, if the existing object
is associated with the same adaptor and the values of
the DeviceID, VideoFormat, and Tag properties match
the object being created. If no matching object can be
found, obj2mfile creates a new object.

'create' Create a new object regardless of whether there are
reusable objects.

Note that obj2mfile(obj,filename,reuse) is a valid syntax. If the
syntax and mode arguments are not specified, obj2mfile uses their
default values.

Examples Create a video input object.

vidobj = videoinput('winvideo', 1, 'RGB24_640x480');

Configure several properties of the video input object.

set(vidobj, 'FramesPerTrigger', 100);
set(vidobj, 'FrameGrabInterval', 2);
set(vidobj, 'Tag', 'CAM1');

Retrieve the selected video source object associated with the video
input object.

src = getselectedsource(vidobj);

Configure the properties of the video source object.

set(src, 'Contrast', 85);
set(src, 'Saturation', 125);

Save the video input object.

obj2mfile(vidobj, 'myvidobj.m', 'set', 'modified');

Delete the object and clear it from the workspace.

14-46

obj2mfile

delete(vidobj);
clear vidobj;

Execute the M-file to recreate the object. Note that obj2mfile creates
and configures the associated video source object as well.

vidObj = myvidobj;

See Also getselectedsource | imaqhelp | propinfo | set | videoinput

14-47

peekdata

Purpose Most recently acquired image data

Syntax data = peekdata(obj,frames)

Description data = peekdata(obj,frames) returns data containing the latest
number of frames specified by frames. If frames is greater than the
number of frames currently acquired, all available frames are returned
with a warning message stating that the requested number of frames
was not available. obj must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

H Image height, as specified in the object’s ROIPosition
property

W Image width, as specified in the object’s ROIPosition
property

B Number of color bands, as specified in the NumberOfBands
property

F Number of frames returned

data is returned to the MATLAB workspace in its native data type
using the color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the
returned data. Use imaqmontage to view multiple frames at once.

peekdata is a nonblocking function that immediately returns image
frames and execution control to the MATLAB workspace. Not all
requested data might be returned.

Note peekdata provides a look at the data; it does not remove data
from the memory buffer. The object’s FramesAvailable property value
is not affected by the number of frames returned by peekdata.

14-48

peekdata

The behavior of peekdata depends on the settings of the Running and
the Logging properties.

Running Logging Object State Result

On Off The object has been started
but is waiting for a trigger.
(TriggerType is set to 'manual'
or 'hardware'). No data has
been acquired so none is
available.

peekdata returns a single
frame of data and issues a
warning, if you requested more
than one frame.

On On The object has been started,
a trigger has executed, and
the object is actively acquiring
data.

peekdata returns the n most
recently acquired frames of
data. The frames are not
removed from the buffer.

Off Off The object has stopped running
because it acquired the
requested number of frames or
you called the stop function.

peekdata can be called once
to return the n most recently
acquired frames of data,
assuming FramesAvailable
is greater than 0. Otherwise,
peekdata returns an error.
The frames returned are not
removed from the memory
buffer.

The number of frames available to peekdata is determined by recalling
the last frame returned by a previous peekdata call, and the number of
frames that were acquired since then.

peekdata can be used only after the start command is issued and
while the object is running. peekdata can also be called once after obj
has stopped running.

Note The peekdata function does not return any data while running if
in disk logging mode.

14-49

peekdata

See Also getdata | getsnapshot | imaqhelp | imaqmontage | propinfo | start

14-50

preview

Purpose Preview of live video data

Syntax preview(obj)
preview(obj,himage)
himage = preview(...)

Description preview(obj) creates a Video Preview window that displays live video
data for video input object obj. The window also displays the timestamp
and video resolution of each frame, and the current status of obj. The
Video Preview window displays the video data at 100% magnification
(one screen pixel represents one image pixel). The size of the preview
image is determined by the value of the video input object ROIPosition
property.

Components of a Video Preview Window

The Video Preview window remains active until it is either stopped
using stoppreview or closed using closepreview. If you delete the
object, by calling delete(obj), the Video Preview window stops
previewing and closes automatically.

14-51

preview

preview(obj,himage) displays live video data for video input object
obj in the image object specified by the handle himage. preview scales
the image data to fill the entire area of the image object but does not
modify the values of any image object properties. Use this syntax to
preview video data in a custom GUI of your own design (see Examples).

himage = preview(...) returns himage, a handle to the image object
containing the previewed data. To obtain a handle to the figure window
containing the image object, use the ancestor function. For more
information about using image objects, see image. See the Custom
Update Function section for more information about the image object
returned.

Notes The behavior of the Video Preview window depends on the video input
object’s current state and trigger configuration.

Object State Preview Window Behavior

Running=off Displays a live view of the image being acquired
from the device, for all trigger types. The image is
updated to reflect changes made to configurations of
object properties. (The FrameGrabInterval property
is ignored until a trigger occurs.)

Running=on If TriggerType is set to immediate or manual, the
Video Preview window continues to update the image
displayed.

If TriggerType is set to hardware, the Video Preview
window stops updating the image displayed until a
trigger occurs.

Logging=on Video Preview window might drop some data frames,
but this will not affect the frames logged to memory
or disk.

14-52

preview

Note The Image Acquisition Toolbox Preview window and the Preview
window that is built into the Image Acquisition Tool support the display
of up to 16-bit image data. The Preview window was designed to only
show 8-bit data, but many cameras return 10-, 12-, 14-, or 16-bit data.
The Preview window display supports these higher bit-depth cameras.
However, larger bit data is scaled to 8-bit for the purpose of displaying
previewed data. If you need the full resolution of the data, use the
getsnapshot or getdata functions.

Custom
Update
Function

preview creates application-defined data for the image object, himage,
assigning it the name 'UpdatePreviewWindowFcn' and setting
its value to an empty array ([]). You can configure the value of
the 'UpdatePreviewWindowFcn' application data and retrieve its
value using the MATLAB setappdata and getappdata functions,
respectively.

The 'UpdatePreviewWindowFcn' will not necessarily be called for
every frame that is acquired. If a new frame is acquired and the
'UpdatePreviewWindowFcn' for the previous frame has not yet
finished executing, no update will be generated for the new frame.
If you need to execute a function for every acquired frame, use the
FramesAcquiredFcn instead.

You can use this function to define custom processing of the previewed
image data. When preview invokes the function handle you specify, it
passes three arguments to your function:

• obj — The video input object being previewed

• event — An event structure containing image frame information.
For more information, see below.

• himage— A handle to the image object that is being updated

14-53

preview

The event structure contains the following fields:

Field Description

Data Current image frame specified as an H-by-W-by-B
matrix where H and W are the image height and
width, respectively, as specified in the ROIPosition
property, and B is the number of color bands, as
specified in the NumberOfBands property.

Resolution String specifying current image width and height, as
defined by the ROIPosition property.

Status String describing the current acquisition status of the
video input object.

Timestamp String specifying the timestamp associated with the
current image frame.

Examples Create a customized GUI.

figure('Name', 'My Custom Preview Window');
uicontrol('String', 'Close', 'Callback', 'close(gcf)');

Create an image object for previewing.

vidRes = get(obj, 'VideoResolution');
nBands = get(obj, 'NumberOfBands');
hImage = image(zeros(vidRes(2), vidRes(1), nBands));
preview(obj, hImage);

For more information on customized GUIs, see “Previewing Data in
Custom GUIs” on page 2-13.

See Also ancestor | closepreview | image | imaqhelp | stoppreview

14-54

propinfo

Purpose Property characteristics for image acquisition objects

Syntax out = propinfo(obj)
out = propinfo(obj,PropertyName)

Description out = propinfo(obj) returns the structure out whose field names
are the names of all the properties supported by obj. obj must be a
1-by-1 image acquisition object. The value of each field is a structure
containing the fields shown below.

Field Name Description

Type Data type of the property. Possible values are
'any', 'callback', 'double', 'string', and
'struct'.

Constraint Type of constraint on the property value. Possible
values are 'bounded', 'callback', 'enum', and
'none'.

ConstraintValue List of valid string values or a range of valid
values.

DefaultValue Default value for the property.

ReadOnly Condition under which a property is read only:

• 'always'— Property cannot be configured.

• 'whileRunning' — Property cannot be
configured while Running is set to on.

• 'never' — Property can be configured at any
time.

DeviceSpecific 1 if the property is device specific; otherwise, 0
(zero).

out = propinfo(obj,PropertyName) returns the structure out for
the property specified by PropertyName. If PropertyName is a cell

14-55

propinfo

array of strings, propinfo returns a structure for each property, stored
in a cell array.

Examples Create the video input object vid.

vid = videoinput('winvideo',1);

Capture all property information for all properties.

out = propinfo(vid);

Access property information for a particular property.

out1 = propinfo(vid,'LoggingMode');

See Also imaqhelp

14-56

save

Purpose Save image acquisition objects to MAT-file

Syntax save filename
save filename obj1 obj2 ...
save(filename,obj1,obj2,...)

Description save filename saves all variables in the MATLAB workspace to the
MAT-file filename. If filename does not include a file extension, save
appends the .MAT extension to the filename.

save filename obj1 obj2 ... saves the specified image acquisition
objects (obj1, obj2, etc.) to the MAT-file filename.

save(filename,obj1,obj2,...) is the functional form of the
command, where the file name and image acquisition objects must be
specified as text strings. If no objects are specified, then all variables
existing in the MATLAB workspace are saved.

Note that any data associated with the image acquisition object is not
stored in the MAT-file. To save the data, bring it into the MATLAB
workspace (using the getdata function), and then save the variable
to the MAT-file.

To return variables from the MAT-file to the MATLAB workspace, use
the load command. Values for read-only properties are restored to
their default values upon loading. For example, the Running property is
restored to 'off'. Use the propinfo function to determine if a property
is read only.

Examples obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'input1')
save fname obj
set(obj, 'TriggerFcn', {'mycallback', 5});
save('fname1', 'obj')

See Also imaqhelp | load | propinfo

14-57

set

Purpose Configure or display image acquisition object properties

Syntax set(obj)
prop_struct = set(obj)
set(obj,PropertyName)
prop_cell = set(obj,PropertyName)
set(obj,PropertyName,PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description set(obj) displays property names and any enumerated values for all
configurable properties of image acquisition object obj. obj must be
a single image acquisition object.

prop_struct = set(obj) returns the property names and any
enumerated values for all configurable properties of image acquisition
object obj. obj must be a single image acquisition object. The return
value prop_struct is a structure whose field names are the property
names of obj, and whose values are cell arrays of possible property
values or empty cell arrays if the property does not have a finite set
of possible string values.

set(obj,PropertyName) displays the possible values for the specified
property, PropertyName, of image acquisition object obj. obj must be
a single image acquisition object. Use the set(obj) syntax to get a
list of all the properties for a particular image acquisition object that
can be set.

prop_cell = set(obj,PropertyName) returns the possible values
for the specified property, PropertyName, of image acquisition object
obj. obj must be a single image acquisition object. The returned array
prop_cell is a cell array of possible value strings or an empty cell array
if the property does not have a finite set of possible string values.

set(obj,PropertyName,PropertyValue,...) configures the property
specified by the text string PropertyName to the value specified by
PropertyValue for image acquisition object obj. You can specify
multiple property name/property value pairs in a single statement. obj
can be a single image acquisition object or a vector of image acquisition

14-58

set

objects, in which case set configures the property values for all the
image acquisition objects specified.

set(obj,S) configures the properties of obj with the values specified in
S, where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array of
strings, PN, to the corresponding values in the cell array PV, for the
image acquisition object obj. PN must be a vector. If obj is an array of
image acquisition objects, PV can be an M-by-N cell array, where M
is equal to the length of the image acquisition object array and N is
equal to the length of PN. In this case, each image acquisition object is
updated with a different set of values for the list of property names
contained in PN.

Note Parameter/value string pairs, structures, and parameter/value
cell array pairs can be used in the same call to set.

Examples These examples illustrate the various ways to use the set function to
set the values of image acquisition object properties.

set(obj, 'FramesPerTrigger', 15, 'LoggingMode', 'disk');
set(obj, {'TimerFcn', 'TimerPeriod'}, {@imaqcallback, 25});
set(obj, 'Name', 'MyObject');
set(obj, 'SelectedSourceName')

See Also get | imaqfind | videoinput

14-59

start

Purpose Obtain exclusive use of image acquisition device

Syntax start(obj)

Description start(obj) obtains exclusive use of the image acquisition device
associated with the video input object obj and locks the device’s
configuration. Starting an object is a necessary first step to acquire
image data, but it does not control when data is logged.

obj can either be a 1-by-1 video input object or an array of video input
objects.

Data logging is controlled with the TriggerType property.

Trigger Type Logging Behavior

'hardware' Data logging occurs when the condition specified
in the object’s TriggerCondition property is met
via the TriggerSource.

'immediate' Data logging occurs immediately.

'manual' Data logging occurs when the trigger function is
called.

Use the triggerconfig function to configure the object’s trigger
settings.

When an acquisition is started, obj performs the following operations:

1 Transfers the object’s configuration to the associated hardware.

2 Executes the object’s StartFcn callback.

3 Sets the object’s Running property to 'On'.

If the object’s StartFcn errors, the hardware is never started and the
object’s Running property remains 'Off'.

The start event is recorded in the object’s EventLog property.

14-60

start

An image acquisition object stops running when one of the following
conditions is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

Examples The start function can be called by a video input object’s event callback.

obj.StopFcn = {'start'};

See Also imaqfind | imaqhelp | propinfo | stop | trigger | triggerconfig

14-61

stop

Purpose Stop video input object

Syntax stop(obj)

Description stop(obj) halts an acquisition associated with the video input object
obj. obj can be either a single video input object or an array of video
input objects.

The stop function

• Sets the object’s Running property to 'Off'

• Sets the object’s Logging property to 'Off', if needed

• Executes the object’s StopFcn callback

An image acquisition object can also stop running under one of the
following conditions:

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

The stop event is recorded in the object’s EventLog property.

Examples The stop function can be called by a video input object’s event callback.

obj.TimerFcn = {'stop'};

See Also imaqfind | start | trigger | propinfo | videoinput

14-62

stoppreview

Purpose Stop previewing video data

Syntax stoppreview(obj)

Description stoppreview(obj) stops the previewing of video data from image
acquisition object obj.

To restart previewing, call preview again.

Examples Create a video input object and open a Video Preview window.

vid = videoinput('winvideo',1);
preview(vid)

Stop previewing video data.

stoppreview(vid);

Restart previewing.

preview(vid)

See Also closepreview | preview

14-63

supportPackageInstaller

Purpose Start Support Package Installer and install support for third-party
hardware or software

Syntax supportPackageInstaller

Description The supportPackageInstaller function opens Support Package
Installer. Support Package Installer can install support packages, which
add support for specific third-party hardware or software to specific
MathWorks products. To see a list of available support packages, run
Support Package Installer and advance to the second screen.

You can also start Support Package Installer in one of the following
ways:

• On the MATLAB toolstrip, click Add-Ons > Get Hardware
Support Packages.

• Double-click a support package installation file (*.mlpkginstall).

14-64

trigger

Purpose Initiate data logging

Syntax trigger(obj)

Description trigger(obj) initiates data logging for the video input object obj. obj
can be either a single video input object or an array of video input
objects.

The trigger function

• Executes the object’s TriggerFcn callback

• Records the absolute time of the first trigger event in the object’s
InitialTriggerTime property

• Configures the object’s Logging property to 'On'

obj must be running and its TriggerType property must be set to
'manual'. To start an object running, use the start function.

The trigger event is recorded in the object’s EventLog property.

Examples The trigger function can be called by a video input object’s event
callback.

obj.StartFcn = @trigger;

See Also imaqfind | start | stop | videoinput

14-65

triggerconfig

Purpose Configure video input object trigger properties

Syntax triggerconfig(obj,type)
triggerconfig(obj,type,condition)
triggerconfig(obj,type,condition,source)
config = triggerconfig(obj)
triggerconfig(obj,config)

Description triggerconfig(obj,type) configures the value of the TriggerType
property of the video input object obj to the value specified by
the text string type. For a list of valid TriggerType values, use
triggerinfo(obj). type must specify a unique trigger configuration.

obj can be either a single video input object or an array of video input
objects. If an error occurs, any video input objects in the array that have
already been configured are returned to their original configurations.

triggerconfig(obj,type,condition) configures the values of
the TriggerType and TriggerCondition properties of the video
input object obj to the values specified by the text strings type and
condition. For a list of valid TriggerType and TriggerCondition
values, use triggerinfo(obj). type and condition must specify a
unique trigger configuration.

triggerconfig(obj,type,condition,source) configures the values of
the TriggerType, TriggerCondition, and TriggerSource properties
of the video input object obj to the values specified by the text
strings type, condition, and source, respectively. For a list of valid
TriggerType, TriggerCondition, and TriggerSource values, use
triggerinfo(obj).

config = triggerconfig(obj) returns a MATLAB structure config
containing the object’s current trigger configuration. obj must be a
1-by-1 video input object. The field names of config are TriggerType,
TriggerCondition, and TriggerSource. Each field contains the
current value of the object’s property.

triggerconfig(obj,config) configures the TriggerType,
TriggerCondition, and TriggerSource property values for video

14-66

triggerconfig

input object obj using config, a MATLAB structure with field names
TriggerType, TriggerCondition, and TriggerSource, each containing
the desired property value.

Examples Example 1

Construct a video input object.

vid = videoinput('winvideo', 1);

Configure trigger properties for the object.

triggerconfig(vid, 'manual')

Trigger the acquisition.

start(vid)
trigger(vid)

Remove video input object from memory.

delete(vid);

Example 2

This example uses a structure returned from triggerinfo to configure
trigger parameters.

Create a video input object.

vid = videoinput('winvideo', 1);

Use triggerinfo to get all valid configurations for the trigger
properties for the object.

config = triggerinfo(vid);

Pass one of the configurations to the triggerconfig function.

triggerconfig(vid,config(2));

Remove video input object from memory.

14-67

triggerconfig

delete(vid);

See Also imaqhelp | trigger | triggerinfo | videoinput

14-68

triggerinfo

Purpose Provide information about available trigger configurations

Syntax triggerinfo(obj)
triggerinfo(obj,type)
config = triggerinfo(...)

Description triggerinfo(obj) displays all available trigger configurations for the
video input object obj. obj can only be a 1-by-1 video input object.

triggerinfo(obj,type) displays the available trigger configurations
for the specified TriggerType, type, for the video input object obj. To
get a list of valid type values for a particular image acquisition object,
use triggerinfo(obj).

config = triggerinfo(...) returns config, an array of MATLAB
structures, containing all the valid trigger configurations for the video
input object obj. Each structure in the array contains these fields:

Field Description

TriggerType Name of the trigger type

TriggerCondition Condition that must be met before executing
a trigger

TriggerSource Hardware source used for triggering

You can pass one of the structures in config to the triggerconfig
function to specify the trigger configuration.

Examples This example illustrates how to use the triggerinfo function to
retrieve valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties.

1 Create a video input object.

vid = videoinput('winvideo');

14-69

triggerinfo

2 Get information about the available trigger configurations for this
object.

config = triggerinfo(vid)

config =

1x2 struct array with fields:
TriggerType
TriggerCondition
TriggerSource

3 View one of the trigger configurations returned by triggerinfo.

config(1)

ans =

TriggerType: 'immediate'
TriggerCondition: 'none'

TriggerSource: 'none'

See Also imaqhelp | triggerconfig

14-70

videoinput

Purpose Create video input object

Syntax obj = videoinput(adaptorname)
obj = videoinput(adaptorname,deviceID)
obj = videoinput(adaptorname,deviceID,format)
obj = videoinput(adaptorname,deviceID,format,P1,V1,...)

Description obj = videoinput(adaptorname) constructs the video input object
obj. A video input object represents the connection between MATLAB
and a particular image acquisition device. adaptorname is a text string
that specifies the name of the adaptor used to communicate with
the device. Use the imaqhwinfo function to determine the adaptors
available on your system.

obj = videoinput(adaptorname,deviceID) constructs a video input
object obj, where deviceID is a numeric scalar value that identifies a
particular device available through the specified adaptor, adaptorname.
Use the imaqhwinfo(adaptorname) syntax to determine the devices
available through the specified adaptor. If deviceID is not specified,
the first available device ID is used. As a convenience, a device’s name
can be used in place of the deviceID. If multiple devices have the same
name, the first available device is used.

obj = videoinput(adaptorname,deviceID,format) constructs a
video input object, where format is a text string that specifies a
particular video format supported by the device or the full path of a
device configuration file (also known as a camera file).

To get a list of the formats supported by a particular device, view the
DeviceInfo structure for the device that is returned by the imaqhwinfo
function. Each DeviceInfo structure contains a SupportedFormats
field. If format is not specified, the device’s default format is used.

When the video input object is created, its VideoFormat field contains
the format name or device configuration file that you specify.

obj = videoinput(adaptorname,deviceID,format,P1,V1,...) creates
a video input object obj with the specified property values. If an invalid
property name or property value is specified, the object is not created.

14-71

videoinput

The property name and property value pairs can be in any format
supported by the set function, i.e., parameter/value string pairs,
structures, or parameter/value cell array pairs.

To view a complete listing of video input object functions and properties,
use the imaqhelp function.

imaqhelp videoinput

Tips The toolbox chooses the first available video source object as the
selected source and specifies this video source object’s name in the
object’s SelectedSourceName property. Use getselectedsource(obj)
to access the video source object that is used for acquisition.

Examples Construct a video input object.

obj = videoinput('matrox', 1);

Select the source to use for acquisition.

set(obj, 'SelectedSourceName', 'input1')

View the properties for the selected video source object.

src_obj = getselectedsource(obj);
get(src_obj)

Preview a stream of image frames.

preview(obj);

Acquire and display a single image frame.

frame = getsnapshot(obj);
image(frame);

Remove video input object from memory.

delete(obj);

14-72

videoinput

See Also delete | imaqfind | isvalid | preview

14-73

wait

Purpose Wait until image acquisition object stops running or logging

Syntax wait(obj)
wait(obj,waittime)
wait(obj,waittime,state)

Description wait(obj) blocks the MATLAB command line until the video input
object obj stops running (Running = 'off'). obj can be either a single
video input object or an array of video input objects. When obj is
an array of objects, the wait function waits until all objects in the
array stop running. If obj is not running or is an invalid object, wait
returns immediately. The wait function can be useful when you want to
guarantee that data is acquired before another task is performed.

wait(obj,waittime) blocks the MATLAB command line until the video
input object or array of objects obj stops running or until waittime
seconds have expired, whichever comes first. By default, waittime is
set to the value of the object’s Timeout property.

wait(obj,waittime,state) blocks the MATLAB command line until
the video input object or array of objects obj stops running or logging,
or until waittime seconds have expired, whichever comes first. state
can be either of the following text strings. The default value is enclosed
in braces ({}).

State Description

{'running'} Blocks until the value of the object’s Running property
is 'off'.

'logging' Blocks until the value of the object’s Logging property
is 'off'.

Note The video input object’s stop event callback function (StopFcn)
might not be called before this function returns.

14-74

wait

An image acquisition object stops running or logging when one of the
following conditions is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when

FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object’s Timeout value is reached.

Examples Create a video input object.

vid = videoinput('winvideo');

Specify an acquisition that should take several seconds. The example
sets the FramesPerTrigger property to 300.

vid.FramesPerTrigger = 300;

Start the object. Because it is configured with an immediate trigger (the
default), acquisition begins when the object is started. The example
calls the wait function after calling the start function. Notice how wait
blocks the MATLAB command line until the acquisition is complete.

start(vid), wait(vid);

See Also imaqhelp | start | stop | trigger | propinfo

14-75

wait

14-76

15

Properties — Alphabetical
List

BayerSensorAlignment property

Purpose Specify sensor alignment for Bayer demosaicing

Description If the ReturnedColorSpace property is set to 'bayer', then the Image
Acquisition Toolbox software will demosaic Bayer patterns returned by
the hardware. This color space setting will interpolate Bayer pattern
encoded images into standard RGB images. If your camera uses Bayer
filtering, the toolbox supports the Bayer pattern and can return color if
desired.

In order to perform the demosaicing, the toolbox needs to know the pixel
alignment of the sensor. This is the order of the red, green, and blue
sensors and is normally specified by describing the four pixels in the
upper-left corner of the sensor. It is the band sensitivity alignment of
the pixels as interpreted by the camera’s internal hardware. You must
get this information from the camera’s documentation and then specify
the value for the alignment, as described in the following table.

There are four possible sensor alignments.

Value Description

'gbrg' The 2-by-2 sensor alignment is

green blue
red green

'grbg' The 2-by-2 sensor alignment is

green red
blue green

'bggr' The 2-by-2 sensor alignment is

blue green
green red

'rggb' The 2-by-2 sensor alignment is

red green
green blue

15-2

BayerSensorAlignment property

The value of this property is only used if the ReturnedColorSpace
property is set to 'bayer'.

For examples showing how to convert Bayer images, see “Converting
Bayer Images” on page 6-19.

Characteristics Access Read/write

Data type String

Values [{'grbg'} | 'gbrg' | 'rggb'| 'bggr']

See Also Functions

getdata, getsnapshot, peekdata, videoinput

Properties

ReturnedColorSpace, VideoFormat

How To’s

“Specifying the Color Space” on page 6-17

“Converting Bayer Images” on page 6-19

15-3

DeviceID property

Purpose Identify image acquisition device represented by video input object

Description The DeviceID property identifies the device represented by the video
input object.

A device ID is a number, assigned by an adaptor, that uniquely
identifies an image acquisition device. The adaptor assigns the first
device it detects the identifier 1, the second device it detects the
identifier 2, and so on.

You must specify the device ID as an argument to the videoinput
function when you create a video input object. The object stores
the value in the DeviceID property and also uses the value when
constructing the default value of the Name property.

To get a list of the IDs of the devices connected to your system, use
the imaqhwinfo function, specifying the name of a particular adaptor
as an argument.

Characteristics Access Read only

Data type double

Values Any nonnegative integer

Examples Use the imaqhwinfo function to determine which adaptors are
connected to devices on your system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
MATLABVersion: '7.4 (R2007a)'

ToolboxName: 'Image Acquisition Toolbox'
ToolboxVersion: '2.1 (R2007a)'

15-4

DeviceID property

Use the imaqhwinfo function again, specifying the name of the adaptor,
to find out how many devices are available through that adaptor. The
imaqhwinfo function returns the device IDs for all the devices in the
DeviceIds field.

info = imaqhwinfo('winvideo')

info =

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.0 (R2006a+)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

See Also Functions

imaqhwinfo, videoinput

Properties

Name

15-5

DiskLogger property

Purpose Specify MATLAB VideoWriter file used to log data

Description The DiskLogger property specifies the VideoWriter or AVI file object
used to log data when the LoggingMode property is set to 'disk'
or 'disk&memory'. For the best performance, VideoWriter is the
recommended file type.

VideoWriter File

For the best performance, logging to disk requires a MATLAB
VideoWriter object, which is a MATLAB object, not an Image
Acquisition Toolbox object. After you create and configure a VideoWriter
object, you provide it to the DiskLogger property.

A MATLAB VideoWriter object specifies the file name and other
characteristics. For example, you can use VideoWriter properties to
specify the profile used for data compression and the desired quality of
the output. For complete information about the VideoWriter object and
its properties, see the VideoWriter documentation.

Note Do not use the variable returned by the VideoWriter function to
perform any operation on a VideoWriter file while it is being used by a
video input object for data logging. For example, do not change any of
the VideoWriter file properties, add frames, or close the object. Your
changes could conflict with the video input object.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

For more information about logging image data using a VideoWriter
file, see “Logging Image Data to Disk” on page 5-46.

15-6

DiskLogger property

AVI File

A MATLAB AVI file object specifies the name and other characteristics
of an AVI file. For example, you can use AVI file object properties to
specify the codec used for data compression and the desired quality of
the output. For complete information about the AVI file object and its
properties, see the avifile documentation.

Note Do not use the variable returned by the avifile function to
perform any operation on an AVI file object while it is being used by a
video input object for data logging. For example, do not change any of
the AVI file object properties, add frames, or close the object. Your
changes could conflict with the video input object.

When the video input object finishes logging data to disk, the AVI file
object remains open. The video input object does not open or close an
AVI file object used for logging. The video input object, however, does
update the Width, Height, and TotalFrames fields in the AVI file object
to reflect the current acquisition settings.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Note The peekdata function does not return any data while running if
in disk logging mode.

Characteristics Access Read only while running

Data type VideoWriter object or AVI file object

Values The default value is [].

15-7

DiskLogger property

Examples Using VideoWriter

Create a video input object that accesses a GigE Vision image
acquisition device and uses grayscale format at 10 bits per pixel.

vidobj = videoinput('gige', 1, 'Mono10');

You can log acquired data to memory, to disk, or both. By default, data
is logged to memory. To change the logging mode to disk, configure the
video input object’s LoggingMode property.

set(vidobj, 'LoggingMode', 'disk')

Create a VideoWriter object with the profile set to Motion JPEG 2000.
Motion JPEG 2000 allows writing the full 10 bits per pixel data to the
file.

vidobj.DiskLogger = VideoWriter('logfile.mj2, 'Motion JPEG 2000')

Now that the video input object is configured for logging data to a
Motion JPEG 2000 file, initiate the acquisition.

start(vidobj)

Wait for the acquisition to finish.

wait(vidobj)

When logging large amounts of data to disk, disk writing occasionally
lags behind the acquisition. To determine whether all frames are
written to disk, you can optionally use the DiskLoggerFrameCount
property.

while (vidobj.FramesAcquired ~= vidobj.DiskLoggerFrameCount)
pause(.1)

end

You can verify that the FramesAcquired and DiskLoggerFrameCount
properties have identical values by using these commands and
comparing the output.

15-8

DiskLogger property

vidobj.FramesAcquired
vidobj.DiskLoggerFrameCount

When the video input object is no longer needed, delete it and clear it
from the workspace.

delete(vidobj)
clear vidobj

Using an AVI File

Create and configure an AVI file object.

file = avifile('logfile.avi');
file.Quality = 50;

Create and configure a video input object.

vid = videoinput('winvideo', 1);
vid.LoggingMode = 'disk&memory';
vid.DiskLogger = file;

Start logging data to disk.

start(vid)

To ensure that the logged data is written to the disk file, close the AVI
file. As an argument to the close function, specify the value of the
video input object DiskLogger property, vid.DiskLogger, to reference
the AVI file object, not the original variable, file, returned by the
avifile function.

file = close(vid.DiskLogger);

15-9

DiskLogger property

Delete the image acquisition object from memory when it is no longer
needed.

delete(vid)
clear vid

See Also Functions

videoinput

Properties

DiskLoggerFrameCount, Logging, LoggingMode

15-10

DiskLoggerFrameCount property

Purpose Specify number of frames written to disk

Description The DiskLoggerFrameCount property indicates the current number of
frames written to disk by the DiskLogger. This value is only updated
when the LoggingMode property is set to 'disk' or 'disk&memory'.

After Logging and Running are off, it is possible that the DiskLogger
might still be writing data to disk. When the DiskLogger finishes
writing data to disk, the value of the DiskLoggerFrameCount property
should equal the value of the FramesAcquired property. Do not close or
modify the DiskLogger until this condition is met.

Characteristics Access Read only

Data type double

Values Any nonnegative integer

See Also Functions

videoinput

Properties

DiskLogger, FramesAcquired, Logging, Running

15-11

ErrorFcn property

Purpose Specify callback function to execute when run-time error occurs

Description The ErrorFcn property specifies the function to execute when an error
event occurs. A run-time error event is generated immediately after a
run-time error occurs.

Run-time errors include hardware errors and timeouts. Run-time
errors do not include configuration errors such as setting an invalid
property value.

Run-time error event information is stored in the EventLog property.
You can retrieve any error message with the Data.Message field of
EventLog.

Note Callbacks, including ErrorFcn, are executed only when the video
object is in a running state. If you need to use the ErrorFcn callback for
error handling during previewing, you must start the video object before
previewing. To do that without logging data, use a manual trigger.

Characteristics Access Read only while running

Data type String, function handle, or cell array

Values imaqcallback is the default callback function.

See Also Properties

EventLog, Timeout

15-12

EventLog property

Purpose Store information about events

Description The EventLog property is an array of structures that stores information
about events. Each structure in the array represents one event. Events
are recorded in the order in which they occur. The first EventLog
structure reflects the first event recorded, the second EventLog
structure reflects the second event recorded, and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type.
The Image Acquisition Toolbox software defines many different event
types, listed in this table. Note that not all event types are logged.

Event Type Description
Included in
Log

Error Run-time error occurred. Run-time
errors include timeouts and
hardware errors.

Yes

Frames Acquired The number of frames specified
in the FramesAcquiredFcnCount
property has been acquired.

No

Start Object was started by calling the
start function.

Yes

Stop Object stopped executing. Yes

Timer Timer expired. No

Trigger Trigger executed. Yes

The Data field stores information associated with the specific event. For
example, all events return the absolute time the event occurred in the
AbsTime field. Other event-specific fields are included in Data. For
more information, see “Retrieving Event Information” on page 7-8.

EventLog can store a maximum of 1000 events. If this value is exceeded,
then the most recent 1000 events are stored.

15-13

EventLog property

Characteristics Access Read only

Data type Structure array

Values Default is empty structure array.

Examples Create a video input object.

vid = videoinput('winvideo');

Start the object.

start(vid)

View the event log to see which events occurred.

elog = vid.EventLog;

{elog.Type}

ans =
'Start' 'Trigger' 'Stop'

View the data associated with a trigger event.

elog(2).Data
ans =

AbsTime: [2003 2 11 17 22 18.9740]
FrameMemoryLimit: 12288000
FrameMemoryUsed: 0

FrameNumber: 0
RelativeFrame: 0
TriggerIndex: 1

See Also Properties

Logging

15-14

FrameGrabInterval property

Purpose Specify how often to acquire frame from video stream

Description The FrameGrabInterval property specifies how often the video input
object acquires a frame from the video stream. By default, objects
acquire every frame in the video stream, but you can use this property
to specify other acquisition intervals.

Note Do not confuse the frame grab interval with the frame rate. The
frame rate describes the rate at which an image acquisition device
provides frames, typically measured in seconds, such as 30 frames per
second. The frame grab interval is measured in frames, not seconds. If
a particular device’s frame rate is configurable, the video source object
might include the frame rate as a device-specific property.

For example, when you specify a FrameGrabInterval value of 3, the
object acquires every third frame from the video stream, as illustrated
in this figure. The object acquires the first frame in the video stream
before applying the FrameGrabInterval.

You specify the source of the video stream in the SelectedSourceName
property.

15-15

FrameGrabInterval property

Characteristics Access Read only while running

Data type double

Values Any positive integer. The default value is 1 (acquire
every frame).

See Also Functions

videoinput

Properties

SelectedSourceName

15-16

FramesAcquired property

Purpose Indicate total number of frames acquired

Description The FramesAcquired property indicates the total number of frames
that the object has acquired, regardless of how many frames have been
extracted from the memory buffer. The video input object continuously
updates the value of the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets
the value of the FramesAcquired property to 0 (zero) and flushes the
buffer.

To find out how many frames are available in the memory buffer, use
the FramesAvailable property.

Characteristics Access Read only

Data type double

Values Any nonnegative integer. The default value is 0
(zero).

See Also Functions

start

Properties

FramesAvailable, FramesAcquiredFcn, FramesAcquiredFcnCount

15-17

FramesAcquiredFcn property

Purpose Specify MATLAB file executed when specified number of frames have
been acquired

Description The FramesAcquiredFcn specifies the MATLAB file function to execute
every time a predefined number of frames have been acquired.

A frames acquired event is generated immediately after the number of
frames specified by the FramesAcquiredFcnCount property is acquired
from the selected video source. This event executes the MATLAB file
specified for FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame
that is acquired. If you do not have this requirement, you might want to
use the TimerFcn property.

Frames acquired event information is not stored in the EventLog
property.

Characteristics Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).

See Also Properties

EventLog, FramesAcquiredFcnCount, TimerFcn

15-18

FramesAcquiredFcnCount property

Purpose Specify number of frames that must be acquired before frames acquired
event is generated

Description The FramesAcquiredFcnCount property specifies the number of frames
to acquire from the selected video source before a frames acquired
event is generated.

The object generates a frames acquired event immediately after the
number of frames specified by FramesAcquiredFcnCount is acquired
from the selected video source.

Characteristics Access Read only while running

Data type double

Values Any positive integer. The default value is 0 (zero).

See Also Properties

FramesAcquiredFcn

15-19

FramesAvailable property

Purpose Indicate number of frames available in memory buffer

Description The FramesAvailable property indicates the total number of frames
that are available in the memory buffer. When you extract data, the
object reduces the value of the FramesAvailable property by the
appropriate number of frames. You use the getdata function to extract
data and move it into the MATLAB workspace.

Note When you issue a start command, the video input object resets
the value of the FramesAvailable property to 0 (zero) and flushes the
buffer.

To view the total number of frames that have been acquired since the
last start command, use the FramesAcquired property.

Characteristics Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

getdata, start

Properties

FramesAcquired

15-20

FramesPerTrigger property

Purpose Specify number of frames to acquire per trigger using selected video
source

Description The FramesPerTrigger property specifies the number of frames the
video input object acquires each time it executes a trigger using the
selected video source.

When the value of the FramesPerTrigger property is set to Inf, the
object keeps acquiring frames until an error occurs or you issue a stop
command.

Note When the FramesPerTrigger property is set to Inf, the object
ignores the value of the TriggerRepeat property.

Characteristics Access Read only while running

Data type double

Values Any positive integer. The default value is 10.

See Also Functions

stop

Properties

TriggerRepeat

15-21

InitialTriggerTime property

Purpose Record absolute time of first trigger

Description The InitialTriggerTime property records the absolute time of the first
trigger. The absolute time is recorded as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the
Logging property is set to 'on'.

To find the time when a subsequent trigger executed, view the
Data.AbsTime field of the EventLog property for the particular trigger.

Characteristics Access Read only

Data type Six-element vector of doubles (MATLAB clock vector)

Values The default value is [].

Examples Create an image acquisition object, vid, for a USB-based webcam.

vid = videoinput('winvideo',1);

Start the object. Because the TriggerType property is set to
'immediate' by default, the trigger executes immediately. The object
records the time of the initial trigger.

start(vid)

abstime = vid.InitialTriggerTime

abstime =

1.0e+003 *

1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

Convert the clock vector into an integer form for display.

t = fix(abstime);

15-22

InitialTriggerTime property

sprintf('%d:%d:%d', t(4),t(5),t(6))

ans =

13:26:20

See Also Functions

clock, getdata

Properties

EventLog, Logging, TriggerType

15-23

Logging property

Purpose Indicate whether object is currently logging data

Description The Logging property indicates whether the video input object is
currently logging data.

When a trigger occurs, the object sets the Logging property to 'on' and
logs data to memory, a disk file, or both, depending on the value of
the LoggingMode property.

The object sets the Logging property to 'off' when it acquires the
requested number of frames, an error occurs, or you issue a stop
command.

To acquire data when the object is running but not logging, use the
peekdata function. Note, however, that the peekdata function does not
guarantee that all the requested image data is returned. To acquire all
the data without gaps, you must have the object log the data to memory
or to a disk file.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']

See Also Functions

getdata, islogging, peekdata, stop, trigger

Properties

LoggingMode, Running

15-24

LoggingMode property

Purpose Specify destination for acquired data

Description The LoggingMode property specifies where you want the video input
object to store the acquired data. You can specify any of the following
values:

Value Description

'disk' Log acquired data to a disk file.

'disk&memory' Log acquired data to both a disk file and to a
memory buffer.

'memory' Log acquired data to a memory buffer.

If you select 'disk' or 'disk&memory', you must specify the AVI
file object used to access the disk file as the value of the DiskLogger
property.

Note When logging data to memory, you must extract the acquired
data in a timely manner with the getdata function to avoid using up all
the memory that is available on your system. Use imaqmem to specify
the amount of memory available for image frames.

Note The peekdata function does not return any data while running if
in disk logging mode.

Characteristics Access Read only while running

Data type String

Values ['disk' | 'disk&memory' | {'memory'}]

Default value is enclosed in braces ({}).

15-25

LoggingMode property

See Also Functions

getdata

Properties

DiskLogger, Logging

15-26

Name property

Purpose Specify name of image acquisition object

Description The Name property specifies a descriptive name for the image acquisition
object.

Characteristics Access Read/write

Data type String

Values Any text string. The toolbox creates the default name by
combining the values of the VideoFormat and DeviceID
properties with the adaptor name in this format:

VideoFormat + '-' + adaptor name + '-' + DeviceID

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the Name property using the get function.

get(vid,'Name')

ans =

RGB555_128x96-winvideo-1

See Also Functions

videoinput

Properties

DeviceID, VideoFormat

15-27

NumberOfBands property

Purpose Indicate number of color bands in data to be acquired

Description The NumberOfBands property indicates the number of color bands in the
data to be acquired. The toolbox defines band as the third dimension in
a 3-D array, as shown in this figure.

The value of the NumberOfBands property indicates the number of color
bands in the data returned by getsnapshot, getdata, and peekdata.

Characteristics Access Read only

Data type double

Values Any positive integer. The default value is defined at
object creation time based on the video format.

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the NumberOfBands property using the get
function.

get(vid,'NumberOfBands')

ans =

3

15-28

NumberOfBands property

If you retrieve the value of the VideoFormat property, you can see that
the video data is in RGB format.

get(vid,'VideoFormat')

ans =

RGB24_320x240

See Also Functions

getdata, getsnapshot, peekdata

15-29

Parent property

Purpose Identify video input object that is parent of video source object

Description The Parent property identifies the video input object that is the parent
of a video source object.

The parent of a video source object is defined as the video input object
owning the video source object.

Characteristics Access Read only

Data type Video input object

Values Defined at object creation time

See Also Functions

videoinput

15-30

Previewing property

Purpose Indicate whether object is currently previewing data in separate window

Description The Previewing property indicates whether the object is currently
previewing data in a separate window.

The object sets the Previewing property to 'on' when you call the
preview function.

The object sets the Previewing property to 'off' when you close the
preview window using the closepreview function or by clicking the
Close button in the preview window title bar.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']

See Also Functions

closepreview, preview

15-31

ReturnedColorSpace property

Purpose Specify color space used in MATLAB

Description The ReturnedColorSpace property specifies the color space you
want the toolbox to use when it returns image data to the MATLAB
workspace. This is only relevant when you are accessing acquired image
data with the getsnapshot, getdata, and peekdata functions.

This property can have any of the following values:

Value Description

'grayscale' MATLAB grayscale color space.

'rgb' MATLAB RGB color space.

'YCbCr' MATLAB YCbCr color space.

Note that YCbCr is often imprecisely referred to as
YUV. (YUV is similar, but not identical. They differ by
the scaling factor applied to the result. YUV refers to a
particular scaling factor used in composite NTSC and
PAL formats. In most cases, you can specify the YCbCr
color space for devices that support YUV.)

'bayer' Convert grayscale Bayer color patterns to RGB images.
The bayer color space option is only available if your
camera’s default returned color space is grayscale.

To use the BayerSensorAlignment property, you must
set the ReturnedColorSpace property to bayer.

Note For some adaptors, such as GigE and GenTL, if you use a format
that starts with Bayer, e.g. BayerGB8_640x480, we automatically
convert the raw Bayer pattern to color – the ReturnedColorSpace is
RGB. If you set the ReturnedColorSpace to 'grayscale', you’ll get
the raw pattern.

15-32

ReturnedColorSpace property

For an example showing how to determine the default color space and
change the color space setting, see “Specifying the Color Space” on page
6-17.

Characteristics Access Read/write

Data type String

Values Defined at object creation time and depends on the
video format selected

See Also Functions

getdata, getsnapshot, peekdata, videoinput

Properties

BayerSensorAlignment, VideoFormat

How To’s

“Specifying the Color Space” on page 6-17

15-33

ROIPosition property

Purpose Specify region-of-interest (ROI) window

Description The ROIPosition property specifies the region-of-interest acquisition
window. The ROI window defines the actual size of the frame logged
by the toolbox, measured with respect to the top left corner of an image
frame.

ROIPosition is specified as a 1-by-4 element vector

[XOffset YOffset Width Height]

where

XOffset Position of the upper left corner of the ROI, measured
in pixels.

YOffset Position of the upper left corner of the ROI, measured
in rows.

Width Width of the ROI, measured in pixels. The sum of
XOffset and Width cannot exceed the width specified
in VideoResolution.

Height Height of the ROI, measured in rows. The sum of
YOffset and Height cannot exceed the height specified
in VideoResolution.

15-34

ROIPosition property

Note The Width does not include both end points as well as the width
between the pixels. It includes one end point, plus the width between
pixels. For example, if you want to capture an ROI of pixels 20 through
30, including both end pixels 20 and 30, set an XOffset of 19 and a
Width of 11. The same rule applies to height.

In the figure shown above, the width of the captured ROI contains
pixels 51 through 170, including both end points, because the XOffset
is set to 50 and the Width is set to 120.

Characteristics Access Read only while running

Data type 1-by-4 element vector of doubles

Values Default is [0 0 width height] where width and
height are determined by VideoResolution.

See Also Properties

VideoResolution

15-35

Running property

Purpose Indicate whether video input object is ready to acquire data

Description The Running property indicates if the video input object is ready to
acquire data.

Along with the Logging property, Running reflects the state of a video
input object. The Running property indicates that the object is ready
to acquire data, while the Logging property indicates that the object is
acquiring data.

The object sets the Running property to 'on' when you issue the start
command. When Running is 'on', you can acquire data from a video
source.

The object sets the Running property to 'off' when any of the following
conditions is met:

• The specified number of frames has been acquired.

• A run-time error occurs.

• You issue the stop command.

When Running is 'off', you cannot acquire image data. However, you
can acquire one image frame with the getsnapshot function.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']

See Also Properties

getsnapshot, start, stop

Properties

Logging

15-36

Selected property

Purpose Indicate whether video source object will be used for acquisition

Description The Selected property indicates if the video source object will be used
for acquisition. You select a video source object by specifying its name
as the value of the video input object’s SelectedSourceName property.
The video input object Source property is an array of all the video
source objects associated with the video input object.

If Selected is 'on', the video source object is selected. If the value is
'off', the video source object is not selected.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red, green, and blue), is treated as a single video
source object.

Characteristics Default value is enclosed in braces ({}).

Access Read only

Data type String

Values [{'off'} | 'on']

Examples Create an image acquisition object.

vid = videoinput('winvideo');

Determine the currently selected video source object.

vid.SelectedSourceName

ans =

input1

Retrieve the currently selected video source object.

15-37

Selected property

src = getselectedsource(vid);

View its Name and Selected properties.

src.SourceName

ans =

input1

src.Selected

ans =

on

See Also Functions

getselectedsource

Properties

SelectedSourceName

15-38

SelectedSourceName property

Purpose Specify name of currently selected video source

Description The SelectedSourceName property specifies the name of the video
source object from which the video input object acquires data. The name
is specified as a string. By default, the video input object selects the
first available video source object stored in the Source property.

The toolbox defines a video source as one or more hardware inputs
that are treated as a single entity. For example, hardware supporting
multiple RGB sources, each of which is made up of three physical
connections (red-green-blue), is treated as a single video source object.

Characteristics Access Read only while running

Data type String

Values The video input object assigns a name to each video
source object it creates. Names are defined at object
creation time and are vendor specific.
By default, the toolbox uses the first available source
name.

Examples To see a list of all available sources, create a video input object.

vid = videoinput('matrox');

Use the set function to view a list of all available video source objects.

src_names = set(vid,'SelectedSourceName');

See Also Functions

set

Properties

Source

15-39

Source property

Purpose Indicate video source objects associated with video input object

Description The Source property is a vector of video source objects that represent
the physical data sources connected to a device. When a video input
object is created, the toolbox creates a vector of video source objects
associated with the video input object.

Each video source object created is provided a unique source name. You
can use the source name to select the desired acquisition source by
configuring the SelectedSourceName property of the video input object.

A video source object’s name is stored in its SourceName property. If a
video source object’s SourceName is equivalent to the video input object’s
SelectedSourceName, the video source object’s Selected property has
a value of 'on'.

The video source object supports a set of common properties, such as
SourceName. Each video source object can also support device-specific
properties that control characteristics of the physical device such as
brightness, hue, and saturation. Different image acquisition devices
expose different sets of properties.

A video source is defined to be a collection of one or more physical data
sources that are treated as a single entity. For example, hardware
supporting multiple RGB sources, each of which is made up of three
physical connections (red-green-blue), is treated as a single video source
object.

The Source property encapsulates one or more video sources. To
reference a video source, you use a numerical integer to index into the
vector of video source objects.

Characteristics Access Read only

Data type Vector of video source objects

Values Defined at object creation time

15-40

Source property

Examples Create an image acquisition object.

vid = videoinput('matrox');

To access all the video source objects associated with a video input
object, use the Source property of the video input object. (To view only
the currently selected video source object, use the getselectedsource
function.)

sources = vid.Source;
src = sources(1);

To view the properties of the video source object src, use the get
function.

get(src)
General Settings:

Parent = [1x1 videoinput]
Selected = on
SourceName = CH1
Tag =
Type = videosource

Device Specific Properties:
InputFilter = lowpass
UserOutputBit3 = off
UserOutputBit4 = off
XScaleFactor = 1
YScaleFactor = 1

See Also Functions

videoinput, getselectedsource

Properties

SelectedSourceName

15-41

SourceName property

Purpose Indicate name of video source object

Description The SourceName property indicates the name of a video source object.

SourceName is one of the values in the video input object’s
SelectedSourceName property.

Characteristics Access Read only

Data type String

Values Defined at object creation time

See Also Functions

getselectedsource

Properties

SelectedSourceName, Source

15-42

StartFcn property

Purpose Specify MATLAB file executed when start event occurs

Description The StartFcn property specifies the MATLAB file function to execute
when a start event occurs. A start event occurs immediately after you
issue the start command.

The StartFcn callback executes synchronously. The toolbox does not
set the object’s Running property to 'on' until the callback function
finishes executing. If the callback function encounters an error, the
object never starts running.

Start event information is stored in the EventLog property.

Characteristics Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).

See Also Properties

EventLog, Running

15-43

StopFcn property

Purpose Specify MATLAB file executed when stop event occurs

Description The StopFcn property specifies the MATLAB file function to execute
when a stop event occurs. A stop event occurs immediately after you
issue the stop command.

The StopFcn callback executes synchronously. Under most
circumstances, the image acquisition object will be stopped and the
Running property will be set to 'off' by the time the MATLAB file
completes execution.

Stop event information is stored in the EventLog property.

Characteristics Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).

See Also Properties

EventLog, Running

15-44

Tag property

Purpose Specify descriptive text to associate with image acquisition object

Description The Tag property specifies any descriptive text that you want to
associate with an image acquisition object.

The Tag property can be useful when you are constructing programs that
would otherwise need to define the image acquisition object as a global
variable, or pass the object as an argument between callback routines.

You can use the value of the Tag property to search for particular image
acquisition objects when using the imaqfind function.

Characteristics Access Read/Write

Data type String

Values Any text string

See Also Functions

imaqfind

15-45

Timeout property

Purpose Specify how long to wait for image data

Description The Timeout property specifies the amount of time (in seconds) that the
getdata and getsnapshot functions wait for data to be returned. The
Timeout property is only associated with these blocking functions. If
the specified time period expires, the functions return control to the
MATLAB command line.

A timeout is one of the conditions for stopping an acquisition. When a
timeout occurs, and the object is running, the MATLAB file function
specified by ErrorFcn is called.

Note The Timeout property is not associated with hardware timeout
conditions.

Characteristics Access Read only while running

Data type double

Values Any positive integer. The default value is 10 seconds.

See Also Functions

getdata, getsnapshot

Properties

EventLog, ErrorFcn

15-46

TimerFcn property

Purpose Specify MATLAB file callback function to execute when timer event
occurs

Description The TimerFcn property specifies the MATLAB file callback function to
execute when a timer event occurs. A timer event occurs when the time
period specified by the TimerPeriod property expires.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).

See Also Functions

start, stop

Properties

TimerPeriod

15-47

TimerPeriod property

Purpose Specify number of seconds between timer events

Description The TimerPeriod property specifies the amount of time, in seconds,
that must pass before a timer event is triggered.

The toolbox measures time relative to when the object is started with
the start function. Timer events stop being generated when the image
acquisition object stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics Access Read only while running

Data type double

Values Any positive value. The minimum value is 0.01
seconds. The default value is 1 (second).

See Also Functions

start, stop

Properties

EventLog, TimerFcn

15-48

TriggerCondition property

Purpose Indicate required condition before trigger event occurs

Description The TriggerCondition property indicates the condition that must be
met, via the TriggerSource, before a trigger event occurs. The trigger
conditions that you can specify depend on the value of the TriggerType
property.

TriggerType Value Conditions Available

'hardware'
(if available for your
device)

Device-specific.
For example, some Matrox hardware supports
conditions such as 'risingEdge' and
'fallingEdge'. Use the triggerinfo function
to view a list of valid values to use with your
image acquisition hardware.

'immediate' 'none'

'manual' 'none'

You must use the triggerconfig function to set the value of this
property.

Characteristics Access Read only. Use the triggerconfig function to set
the value of this property.

Data type String

Values Device specific. Use the triggerinfo function to
view a list of valid values to use with your image
acquisition hardware.

See Also Functions

trigger, triggerconfig, triggerinfo

15-49

TriggerCondition property

Properties

TriggerSource, TriggerType

15-50

TriggerFcn property

Purpose Specify MATLAB file callback function to execute when trigger event
occurs

Description The TriggerFcn property specifies the MATLAB file callback function
to execute when a trigger event occurs. The toolbox generates a trigger
event when a trigger is executed based on the configured TriggerType,
and data logging is initiated.

Under most circumstances, the MATLAB file callback function is not
guaranteed to complete execution until sometime after the toolbox sets
the Logging property to 'on'.

Trigger event information is stored in the EventLog property.

Characteristics Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).

See Also Functions

trigger

Properties

EventLog, Logging

15-51

TriggerFrameDelay property

Purpose Specify number of frames to skip before acquiring frames after trigger
occurs

Description The TriggerFrameDelay property specifies the number of frames to
skip before acquiring frames after a trigger occurs. The object waits
the specified number of frames after the trigger before starting to log
frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five
frames pass before starting to acquire frames. The number of frames
captured is defined by the FramesPerTrigger property.

Characteristics Access Read only while running

Data type double

Values Any integer. The default value is 0 (zero).

See Also Functions

trigger

15-52

TriggerFrameDelay property

Properties

FramesPerTrigger

15-53

TriggerRepeat property

Purpose Specify number of additional times to execute trigger

Description The TriggerRepeat property specifies the number of additional times
you want the object to execute a trigger. This table describes the
behavior for several typical TriggerRepeat values.

Value Behavior

0 (default) Execute the trigger once when the trigger condition
is met.

Any positive
integer

Execute the trigger the specified number of
additional times when the trigger condition is met.

Inf Keep executing the trigger every time the trigger
condition is met until the stop function is called
or an error occurs.

To determine how many triggers have executed, check the value of the
TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores
the value of the TriggerRepeat property.

Characteristics Access Read only while running

Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

stop, trigger

Properties

FramesPerTrigger, TriggersExecuted, TriggerType

15-54

TriggersExecuted property

Purpose Indicate total number of executed triggers

Description The TriggersExecuted property indicates the total number of triggers
that the video input object has executed.

Characteristics Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).

See Also Functions

trigger

Properties

EventLog

15-55

TriggerSource property

Purpose Indicate hardware source to monitor for trigger conditions

Description The TriggerSource property indicates the hardware source the image
acquisition object monitors for trigger conditions. When the condition
specified in the TriggerCondition property is met, the object executes
the trigger and starts acquiring data.

You use the triggerconfig function to specify this value. The value of
the TriggerSource property is device specific. You specify whatever
mechanism a particular device uses to generate triggers.

For example, for Matrox hardware, the TriggerSource property could
have values such as 'Port0' or 'Port1'. Use the triggerinfo function
to view a list of values that are valid for your image acquisition device.

You must use the triggerconfig function to set the value of this
property.

Note The TriggerSource property is only used when the TriggerType
property is set to 'hardware'.

Characteristics Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String

Values Device-specific. Use the triggerinfo function to get a
list of valid values.

See Also Functions

trigger, triggerconfig, triggerinfo

Properties

TriggerCondition, TriggerType

15-56

TriggerType property

Purpose Indicate type of trigger used by video input object

Description The TriggerType property indicates the type of trigger used by the
video input object. Triggers initiate data acquisition.

You use the triggerconfig function to specify one of the following
values for this property.

Trigger Type Description

'hardware'
(if available for
your device)

Trigger executes when a specified condition
is met. You specify the condition using the
TriggerCondition property and you specify the
hardware source to monitor for the condition
in the TriggerSource property. You use the
triggerconfig function to set the values of
these properties.

'immediate' Trigger executes immediately after you call the
start function.

'manual' Trigger executes immediately after you call the
trigger function.

Characteristics Default value is enclosed in braces ({}).

Access Read only. Use the triggerconfig function to
set the value of this property.

Data type String

Values ['hardware' | {'immediate'} | 'manual']

The 'hardware' option is only included for
devices that support hardware triggers.

See Also Functions

trigger, triggerconfig, triggerinfo

15-57

TriggerType property

Properties

TriggerCondition, TriggerSource

15-58

Type property

Purpose Identify type of image acquisition object

Description The Type property identifies the type of image acquisition object. An
image acquisition object can be either one of two types:

• Video input object

• Video source object

Characteristics Access Read only

Data type String

Values ['videoinput' | 'videosource'] Defined at
object creation time

Examples vid = videoinput('winvideo',1)

get(vid,'Type')

ans =

videoinput

This example gets the type of a video source object.

src = getselectedsource(vid);
get(src,'type')
ans =
videosource

See Also Functions

getselectedsource, videoinput

15-59

UserData property

Purpose Store data to associate with image acquisition object

Description The UserData property specifies any data that you want to associate
with an image acquisition object.

Note The object does not use the data in UserData directly. However,
you can access the data by using the get function or by referencing the
property as you would a field in a MATLAB structure.

Characteristics Access Read/Write

Data type Any

Values User-defined

See Also Functions

get

15-60

VideoFormat property

Purpose Specify video format or name of device configuration file

Description The VideoFormat property specifies the video format used by the
image acquisition device or the name of a device configuration file,
depending on which you specified when you created the object using
the videoinput function.

Image acquisition devices typically support multiple video formats.
When you create a video input object, you can specify the video format
that you want the device to use. If you do not specify the video format
as an argument, the videoinput function uses the default format. Use
the imaqhwinfo function to determine which video formats a particular
device supports and find out which format is the default.

As an alternative, you can specify the name of a device configuration
file, also known as a camera file or digitizer configuration format (DCF)
file. Some image acquisition devices use these files to store device
configuration information. The videoinput function can use this file to
determine the video format and other configuration information.

Use the imaqhwinfo function to determine if your device supports
device configuration files.

Characteristics Access Read only

Data type String

Values Device-specific. The example describes how to get a
list of all the formats supported by a particular image
acquisition device.

Examples To determine the video formats supported by a device, check the
SupportedFormats field in the device information structure returned
by imaqhwinfo.

info = imaqhwinfo('winvideo')

info =

15-61

VideoFormat property

AdaptorDllName: [1x73 char]
AdaptorDllVersion: '2.1 (R2007a)'

AdaptorName: 'winvideo'
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

info.DeviceInfo

ans =

DefaultFormat: 'RGB555_128x96'
DeviceFileSupported: 0

DeviceName: 'IBM PC Camera'
DeviceID: 1

VideoInputConstructor: 'videoinput('winvideo', 1)'
VideoDeviceConstructor: 'imaq.VideoDevice('winvideo', 1)'

SupportedFormats: {1x34 cell}

See Also Functions

imaqhwinfo, videoinput

15-62

VideoResolution property

Purpose Indicate width and height of incoming video stream

Description The VideoResolution property is a two-element vector indicating
the width and height of the frames in the incoming video stream.
VideoResolution is specified as

[Width Height]

Width is measured in pixels and height is measured in rows.

Note You specify the video resolution when you create the video input
object, by passing in the video format argument to the videoinput
function. If you do not specify a video format, the videoinput function
uses the default video format. Use the imaqhwinfo function to
determine which video formats a particular device supports and find
out which format is the default.

Characteristics Access Read only

Data type Vector of doubles

Values Defined by video format

See Also Functions

imaqhwinfo, videoinput

Properties

ROIPosition, VideoFormat

15-63

VideoResolution

15-64

16

Block Reference

From Video Device

Purpose Acquire live image data from image acquisition device

Library Image Acquisition Toolbox

Description
The From Video Device block lets you acquire image and video data
streams from image acquisition devices, such as cameras and frame
grabbers, in order to bring the image data into a Simulink model. The
block also lets you configure and preview the acquisition directly from
Simulink.

The From Video Device block opens, initializes, configures, and controls
an acquisition device. The opening, initializing, and configuring occur
once, at the start of the model’s execution. During the model’s run
time, the block buffers image data, delivering one image frame for each
simulation time step.

The block has no input ports. You can configure the block to have
either one output port, or three output ports corresponding to the
uncompressed color bands, such as red, green, and blue, or Y, Cb, Cr.
The previous figure shows both configurations.

Other Supported Features

The From Video Device block supports the use of Simulink Accelerator
mode. This feature speeds up the execution of Simulink models.

The From Video Device block supports the use of model referencing.
This feature lets your model include other Simulink models as modular
components.

16-2

From Video Device

For more information on these features, see the Simulink
documentation.

The From Video Device block supports the use of code generation along
with the packNGo function to group required source code and dependent
shared libraries. See the next section.

Note For an in-depth example of using this block, see “Saving Video
Data to a File” on page 8-6.

Code
Generation

The From Video Device block supports the use of code generation. You
can generate code from the block. This enables models containing the
From Video Device block to run successfully in Accelerator, Rapid
Accelerator, External, and Deployed modes.

Code Generation with the Simulink Coder

You can use the Image Acquisition Toolbox, Simulink Coder, and
Embedded Coder® products together to generate code (on the host end)
that you can use to implement your model for a practical application.
For more information on code generation, see the Simulink Coder
documentation.

Note If you are using a GigE Vision camera: you do not need to install
GenICam to use the GigE adaptor, because it is now included in the
installation of the toolbox. However, if you are using the From Video
Device block and doing code generation, you would need to install
GenICam to run the generated application outside of MATLAB.

Shared Library Dependencies

The From Video Device block generates code with limited portability.
The block uses precompiled shared libraries, such as DLLs, to support
I/O for specific types of devices. The Simulink Coder software provides
functions to help you set up and manage the build information for your

16-3

From Video Device

models. One of the Build Information functions that Simulink Coder
provides is packNGo. This function allows you to package model code
and dependent shared libraries into a zip file for deployment. The
target system does not need to have MATLAB installed but it does need
to be supported by MATLAB.

The block supports use of the packNGo function. Source-specific
properties for your device are honored when code is generated. The
generated code compiles with both C and C++ compilers.

To set up packNGo:

set_param(gcs, 'PostCodeGenCommand', 'packNGo(buildInfo)');

In this example, gcs is the current model that you wish to build.
Building the model creates a zip file with the same name as model
name. You can move this zip file to another machine and the source
code in the zip file can be built to create an executable which can be
run independent of MATLAB and Simulink. For more information on
packNGo, see packNGo.

Note The From Video Device block supports the use of Simulink Rapid
Accelerator mode and code generation on Windows platforms. Code
generation is also supported on Linux, but Rapid Accelerator mode is
not.

Note If you get a “Device in use” error message when using the block
with certain hardware, such as Matrox, close any programs that are
using the hardware, and then try using the block again.

Note On Linux platforms, you need to add the directory where you
unzip the libraries to the environment variable LD_LIBRARY_PATH.

16-4

From Video Device

Dialog
Box

In the Source Block Parameters dialog box, the options that appear are
dependent on the device you are using. The first diagram illustrates the
fields that may appear if your device supports hardware triggering and
Bayer Sensor Alignment as a color space option.

16-5

From Video Device

The second diagram illustrates the options that may appear if your
device supports using either one output port or multiple output ports
for the color bands (the Ports mode option). Ports mode is visible if the
selected device and format settings can output color data.

The following fields appear in the Source Block Parameters dialog
box. Some fields may not appear, as they are device dependent. If

16-6

From Video Device

your selected device does not support a feature, it may not appear in
the dialog box.

Device
The image acquisition device to which you want to connect. The
items in the list vary, depending on which devices you have
connected to your system. All video capture devices supported
by the Image Acquisition Toolbox software are supported by the
block.

Video format
Shows the video formats supported by the selected device. This list
varies with each device. If your device supports the use of camera
files, From camera file will be one of the choices in the list.

Camera file
This option only appears if you select a device that supports
camera files. You can select From camera file from the Video
format field, and enter the path and file name, or use the Browse
button to locate the file.

Video source
The available input sources for the specified device and format.
You can use the Edit properties button to edit the source
properties. That will open the Property Inspector.

Edit properties button
Edits video source device-specific properties, such as brightness
and contrast. It opens the Property Inspector. The properties
that are listed vary be device. Properties that can be edited
are indicated by a pencil icon or a drop-down list in the table.
Properties that are grayed out cannot be edited. When you close
the Property Inspector, your edits are saved.

Enable hardware triggering
This option only appears if the selected device supports hardware
triggering. Select the check box to enable hardware triggering.
Once enabled, you can select the Trigger configuration.

16-7

From Video Device

Trigger configuration
This option only appears if the selected device supports
hardware triggering. Check the Enable hardware triggering
box to enable it. Once enabled, you can select the Trigger
configuration. The configuration choices are listed by trigger
source/trigger condition. For example, TTL/fallingEdge means
that TTL is the trigger source and the falling edge of the signal is
the condition that triggers the hardware.

ROI position
Use this field to input a row vector that specifies the region of
acquisition in the video image. The format is [row, column, height,
width]. The default values for row and column are 0. The default
values for height and width are set to the maximum allowable
value, indicated by the video format’s resolution. Therefore you
only need to change the values in this field if you do not want
to capture the full image size.

Output color space
Use this field to select the color space for devices that support
color. Possible values are rgb, grayscale, and YCbCr. The default
value is rgb. If your device supports Bayer Sensor Alignment, a
fourth value of bayer is also available.

Bayer sensor alignment
This field is only visible if your device supports Bayer sensor
alignment. You must set the Output color space field to bayer,
then it becomes activated. Use this to set the 2-by-2 sensor
alignment. Possible values are grbg, gbrg, and rggb, and bggr.
The default value is grbg.

Preview button
Preview the video image. It opens the Video Preview window that
is part of the Image Acquisition Toolbox software. If you change
something in the Source Block Parameters dialog box while the
preview is running, the image will adjust accordingly. This lets
you set up your image acquisition to the way you want it to be
acquired by the block when you run the model.

16-8

From Video Device

Block sample time
Specify the sample time of the block during the simulation. This
is the rate at which the block is executed during simulation. The
default is 1/30.

Note The block sample time does not set the frame rate on the
device that is used in simulation. Frame rate is determined by
the video format specified (standard format or from a camera
file). Some devices even list frame rate as a device-specific source
property. Frame rate is not related to the Block sample time
option in the dialog. Block sample time defines the rate at which
the block executes during simulation time.

Ports mode
Used to specify either a single output port for all color spaces, or
one port for each band (for example, R, G, B). When you select One
multidimensional signal, the output signal will be combined
into one line consisting of signal information for all color signals.
Select Separate color signals if you want to use three ports
corresponding to the uncompressed red, green, and blue color
bands. Note that some devices will use YCbCr for the separate
color signals.

Note The block acquires data in the default ReturnedColorSpace
setting for the specified device and format.

Data type
The image data type when the block outputs frames. This data
type indicates how image frames are output from the block to
Simulink. It supports all MATLAB data types and single is the
default.

16-9

From Video Device

Kinect for Windows Metadata Output Ports

This is used to return skeleton information in Simulink during
simulation and code generation. You can output metadata information
in normal, accelerator, and deployed simulation modes. Each metadata
item in the Selected Metadata list becomes an output port on the
block.

If you are using a Kinect for Windows camera, and you select the Depth
sensor as your Device and the Depth Source as your Video source,
the Metadata Output Ports section appears.

The Metadata Output Ports section lists the metadata that is
associated with the Kinect Depth sensor.

16-10

From Video Device

This section is only visible when a Kinect Depth sensor is selected.
The All Metadata list shows which metadata are available. The
Selected Metadata list shows which metadata items will be returned
to Simulink. This is empty by default. To use one of the metadata, add

16-11

From Video Device

it from the All to the Selected list by selecting it in the All list and
clicking the Add button (blue arrow icon). The Remove button (red X
icon) removes an item from the Selected Metadata list. You can also
use theMove up andMove down buttons to change the order of items
in the Selected list. The list supports multi-select as well.

You can see in the example above that three metadata items have
been put in the Selected list. When you click Apply, output ports are
created on the block for these metadata, as shown here. The first port
is the depth frame.

For descriptions and information on these metadata fields and using
Kinect for Windows with the Image Acquisition Toolbox, see “Acquiring
Image and Skeletal Data Using Kinect” on page 10-10.

16-12

Video Input (Obsolete)

Purpose Connect to image acquisition device

Library Image Acquisition Toolbox

Description The Video Input block is obsolete. It may be removed in a future version
of the Image Acquisition Toolbox block library. Use the replacement
block From Video Device.

The Video Input block opens, initializes, configures, and controls an
acquisition device. The opening, initializing, and configuration occur
once, at the start of the model’s execution. During the model’s run-time,
the block buffers image data, delivering the latest image frame for each
simulation time step.

The block has no input ports. The block has three output ports,
corresponding to the uncompressed red, green, and blue color bands.

Note The Video Input block supports only Windows video devices
compatible with DirectX.

Dialog
Box

16-13

Video Input (Obsolete)

Device name
The image acquisition device to which you want to connect. The
items in the list vary, depending on which devices you have
connected to your system.

Input video format
The video formats supported by the device. This list varies with
each device.

Frame rate
The speed at which frames are delivered to the block, expressed
as frames per second (fps).

Output data type
The image data type used when the block outputs frames. This
data type indicates how image frames are stored internally.

16-14

Index

IndexA
acquiring data 3-34
acquiring images

basic procedure 1-7
connecting to devices 4-1 to 4-2
overview 5-3
specifying a delay 5-34
specifying the amount 5-27
specifying the frame grab interval 5-28
specifying the timeout value 15-46
troubleshooting hardware 13-3
waiting for completion 5-37

Acquisition Parameters
Device Properties 3-13
Disk Logging 3-17
Frames Per Trigger 3-12
hardware triggering 3-22
Logging 3-16
Memory Logging 3-17
Number of Triggers 3-21
Region of Interest (ROI) 3-24
Trigger Type 3-21
Triggering 3-21

Acquisition Parameters tabs 3-11
adaptor kit

adding support of additional hardware 12-2
adaptor names

finding 4-16
adaptors

definition 4-3
adding hardware 3-9
application-defined data

using to specify update preview window
function 2-17

Audio Video Interleave (AVI) format
creating an AVI file object 5-51
logging images to disk 5-46
writing to file from model 8-9

AVI file 3-17

B
Bayer demosaicing 15-2
BayerSensorAlignment property 15-2
block library

using 8-1
blurry frames 3-37

C
callback functions

as text string 7-16
creating 7-13
enabling and disabling 7-17
specifying 7-15
specifying as cell array 7-16
specifying as function handle 7-16

callback properties
list of 7-5

camcorders
support for 2-5

camera file 3-10
camera files 4-14
Carnegie Mellon University DCAM driver

installing 13-10
clear function 14-2
closepreview function 14-3

using 2-13
code generation 8-5
color spaces

of acquired image data 6-17
Coreco IFC devices

determining driver version 13-5
troubleshooting 13-4

Coreco Sapera devices
determining driver version 13-7
troubleshooting 13-6

D
DALSA Coreco IFC devices

Index-1

Index

determining driver version 13-5
troubleshooting 13-4

DALSA Coreco Sapera devices
determining driver version 13-7
troubleshooting 13-6

dark frames 3-37
Data Translation devices

troubleshooting 13-8
data type used by device

finding 4-16
DCAM

support for 2-5
troubleshooting 13-9

DCAM driver
installing and configuring 13-10

DCAM trigger modes 5-19
debugging your hardware 13-45

imaqsupport 13-45
delete function 14-4
deleting

image acquisition objects 4-28
desktop user interface 3-2
device configuration files 4-14
device drivers

determining version 13-5 13-7 13-18 13-20
13-22 13-24

finding name and version 4-16
device IDs

finding 4-2
of image acquisition devices 4-3

device information structure
returned by imaqhwinfo 4-4

device name
finding 4-16

Device Properties 3-13
DeviceID property 15-4
DeviceInfo field 4-4
devices

adding support for 12-2

Digital Camera (DCAM) specification
support for 2-5

digital video
support for 2-5

digitizer configuration format (DCF) files 4-14
DirectX drivers

finding version 13-37
disk files

logging image data to 5-46
Disk Logging 3-17
DiskLogger property 15-6

using 5-46
DiskLoggerFrameCount property 15-11
disp function 14-5
displaying images

after acquiring 6-23

E
error events

definition 7-6
information returned 7-9

ErrorFcn 7-13
ErrorFcn property 15-12
event structures 7-8
EventLog property 15-13

retrieving information from 7-10
events

retrieving event information 7-8
types of 7-5

Export Data button 3-38
exporting acquired data 3-38
exporting hardware configurations 3-44
exporting to Motion JPEG 2000 file 3-38
exporting to VideoWriter file 3-38
external triggers

configured in camera files 4-14
example 5-15

extracting image data 6-3

Index-2

Index

F
FireWire

image acquisition devices 2-2
Firewire (IEEE 1394) Digital Camera (DCAM)

specification
support for 2-5

flushdata function 14-7
using 5-43

frame delay
specifying 15-52

frame grabbers 2-2
troubleshooting 13-3
troubleshooting DALSA Coreco IFC

devices 13-4
troubleshooting DALSA Coreco Sapera

devices 13-6
troubleshooting Data Translation

devices 13-8
frame memory limit

setting 5-41
frame rates

in example 6-5
relation to processing speed 2-8

FrameGrabInterval property 15-15
using 5-28

frames
determining dimensions of 6-13
determining how many have been

acquired 5-29
memory usage 5-41
specifying the number to acquire 5-27

frames acquired events
definition 7-6
example 7-18
information returned 7-9

Frames Per Trigger 3-12
FramesAcquired property 15-17
FramesAcquiredFcn 7-13
FramesAcquiredFcn property 15-18
FramesAcquiredFcnCount property 15-19

FramesAvailable property 15-20
using 5-31

FramesPerTrigger property 15-21
using 5-29

freeing memory
used for image frames 5-43

From Video Device block 16-2
using 8-1

G
generating code from the Simulink block 8-5
GenICam GenTL devices

troubleshooting 13-34
GenICam installation for GigE Vision

devices 9-12
get function 14-8

using 4-18
getdata function 14-9

specifying the timeout value 15-46
using 6-4

getselectedsource function 14-13
getsnapshot function 14-14
GigE Vision

device and driver installation 9-4
device setups 9-2
GenICam installation 9-12
Linux network configuration 9-6
Mac network configuration 9-7
network adaptor configuration 9-4
network configuration 9-3
software configuration 9-12
Windows network configuration 9-4

GigE Vision devices 9-2
troubleshooting 13-26

H
Hamamatsu devices

troubleshooting 13-16

Index-3

Index

hardware triggering 3-22
hardware triggers

configured in camera files 4-14
defined 5-9
example 5-15

I
IAT file 3-42
IEEE 1394

troubleshooting DCAM driver 13-9
IEEE-1394

image acquisition devices 2-2
image acquisition

basic procedure 1-7
determining time of 6-25
getting hardware information 4-2
overview 5-3
previewing the image 2-10
retrieving timing information 6-24
setting up 2-7
specifying a delay 15-52
specifying the timeout value 15-46
time-based acquisition 6-5
using timers with 15-47

image acquisition devices 2-2
adaptors 4-2 to 4-3
adding support for 12-2
connecting to 4-1 to 4-2
finding the device ID 4-2
list of supported devices 2-5
setting up 2-7
troubleshooting 13-3 13-36
troubleshooting Hamamatsu devices 13-16

image acquisition objects
associating data with 15-60
avoiding global variables 15-45
configuring properties 4-17
creating 4-9
deleting 4-28

determining the device ID 15-4
determining type of 15-59
finding all existing objects 4-28
starting 4-24
state 4-24
stopping 4-24
types of 4-9
viewing all settable properties 4-21
viewing properties 4-18

Image Acquisition Tool 3-1
acquiring data 3-34
Acquisition Parameters tabs 3-11
adding new hardware 3-9
Device Properties 3-13
Disk Logging 3-17
exporting acquired data 3-38
exporting hardware configurations 3-44
Frames Per Trigger 3-12
Hardware Browser 3-8
hardware triggering 3-22
IAT file 3-42
Logging 3-16
manual triggering 3-21
Memory Logging 3-17
opening 3-2
Preview window 3-31
previewing data 3-33
Region of Interest (ROI) 3-24
saving configurations 3-42
selecting device 3-8
selecting format 3-8
Triggering 3-21
troubleshooting bad images 3-37
using a camera file 3-10

Image Acquisition Tool desktop 3-2
Image Acquisition Toolbox GUI 3-1 to 3-2
image data

importing into a Simulink model 8-1
image frames

bringing into the workspace 6-2

Index-4

Index

determining acquisition time 6-25
determining dimensions of 6-13
memory usage 5-41

image objects
using as preview windows 2-13

Image Processing Toolbox 1-4 2-4
images

acquiring 5-3
color spaces of acquired data 6-17
determining dimensions of 6-13
determining how many are available 5-31
determining how many have been

acquired 5-29
extracting from memory 6-3
logging to disk 5-46
memory usage 5-41
retrieving acquired images 6-2
specifying how many to acquire 5-27
viewing acquired data 6-23
waiting for an acquisition to complete 5-37

imaging boards 2-2
troubleshooting 13-3

imaq.VideoDevice function 14-31
imaqcallback function

using default callback function 7-3
imaqfind function 14-16

using 4-28
imaqhelp function 14-18

getting property information 4-21
imaqhwinfo function 14-20

using 4-2
imaqmem function 14-24

using 5-41
imaqmontage function 14-27
imaqreset function 14-29
imaqsupport function 13-45
imaqtool 3-2
imaqtool function 14-30
immediate triggers

defined 5-9

example 5-10
InitialTriggerTime property 15-22

using 6-24
installation of GigE Vision devices and

drivers 9-4
islogging function 14-39
isrunning function 14-41
isvalid function 14-42

L
Linux DCAM devices

troubleshooting 13-41
Linux Video devices

troubleshooting 13-39
load function 14-43
Logging 3-16
logging image data

to disk 5-46
Logging property 15-24
logging state

overview 5-3
logging to AVI file 3-17
logging to Motion JPEG 2000 file 3-17
logging to VideoWriter file 3-17
LoggingMode property 15-25

M
Macintosh DCAM devices

troubleshooting 13-43
Macintosh Video devices

troubleshooting 13-42
manual triggering 3-21
manual triggers

defined 5-9
example 5-13

Matrox devices
determining driver version 13-18
troubleshooting 13-17

Index-5

Index

Matrox MIL Configuration utility
using 13-18

memory buffer
determining number of frames in 5-31
emptying 5-43

Memory Logging 3-17
memory usage

monitoring 5-41
Microsoft DirectX

find version 13-37
Motion JPEG 2000 file 3-17 3-38
Motion JPEG 2000 format

logging images to disk 5-46

N
Name property 15-27
National Instruments devices

determining driver version 13-22
troubleshooting 13-21

native data type
finding 4-16

network adaptor configuration for GigE Vision
devices 9-4

network configuration for GigE Vision
devices 9-3

Number of Triggers 3-21
NumberOfBands property 15-28

O
obj2mfile function 14-44
opening Image Acquisition Tool 3-2

P
Parent property 15-30
peekdata function 14-48

using 6-6
using before a trigger 6-8

Point Grey devices

determining driver version 13-24
troubleshooting 13-23

preview function 14-51
using 2-11

Preview window 3-31
previewing

closing the preview window 2-13
creating custom preview GUIs 2-13
opening the Video Preview window 2-11
performing custom processing 2-15
stopping the preview video stream 2-12

previewing data 3-33
Previewing property 15-31
properties

determining their value 4-20
getting information about 4-21
of image acquisition objects 4-17

propinfo function 14-55
getting property information 4-21

Q
QImaging devices

determining driver version 13-20
troubleshooting 13-19

R
refreshing hardware 3-9
region of interest (ROI)

specifying 15-34
Region of Interest (ROI) 3-24
ReturnedColorSpace property 15-32
ROIPosition property 15-34
Running property 15-36
running state

description of 4-24

S
save function 14-57

Index-6

Index

saving Image Acquisition Tool
configurations 3-42

Selected property 15-37
SelectedSourceName property 15-39
selecting a device in the GUI 3-8
set function 14-58

using 4-21
software configuration for GigE Vision

devices 9-12
Source property 15-40
SourceName property 15-42
start events

callback function property 15-43
definition 7-6
information returned 7-9

start function 14-60
StartFcn 7-13
StartFcn property 15-43
stop events

callback function property 15-44
definition 7-7
information returned 7-9

stop function 14-62
StopFcn 7-13
StopFcn property 15-44
stoppreview function 14-63
synchronizing acquisition

example 5-15
system requirements

image acquisition 2-5

T
Tag property 15-45
television tuner boards

support for 2-5
time-based acquisition 6-5
Timeout property 15-46
timer events

definition 7-7

example 7-19
information returned 7-10

TimerFcn 7-13
TimerFcn property 15-47
TimerPeriod property 15-48
timers

specifying period of 15-48
specifying with image acquisition 15-47

timing of acquisition
retrieving 6-24

trigger events
definition 7-7
information returned 7-9
specifying callback function 15-51

trigger function 14-65
trigger modes

DCAM-specific 5-19
Trigger Type 3-21
TriggerCondition property 15-49

configuring 5-7
triggerconfig function 14-66
TriggerFcn 7-13
TriggerFcn property 15-51
TriggerFrameDelay property 15-52

using 5-34
triggerinfo function 14-69
Triggering 3-21
TriggerRepeat property 15-54

using 5-35
triggers

configuring 5-4
configuring repeating triggers 5-35
controlling acquisition parameters 5-26
DCAM-specific modes 5-19
determining execution time 6-24
hardware 5-15
immediate 5-10
manual 5-13
specifying properties 5-6
specifying the type 5-9

Index-7

Index

specifying when they occur 15-49
types of 5-9

TriggersExecuted property 15-55
TriggerSource property 15-56

configuring 5-7
TriggerType property 15-57

configuring 5-7
types of triggers 5-9

troubleshooting
DALSA Coreco IFC devices 13-4
DALSA Coreco Sapera 13-6
Data Translation devices 13-8
DCAM driver 13-9
GenICam GenTL devices 13-34
GigE Vision devices 13-26
Hamamatsu devices 13-16
image acquisition hardware 13-3
Linux DCAM devices 13-41
Linux Video devices 13-39
Macintosh DCAM devices 13-43
Macintosh Video devices 13-42
Matrox devices 13-17
National Instruments devices 13-21
point Grey devices 13-23
QImaging devices 13-19
Video Preview window 13-44
Windows Video devices 13-36

troubleshooting bad images 3-37
troubleshooting hardware 13-3
TV tuner boards

support for 2-5
Type property 15-59

U
update preview window function

creating 2-16
specifying 2-17

USB
image acquisition devices 2-2

user interface 3-1
UserData property 15-60

V
vendor adaptors

definition 4-3
video

importing into a Simulink model 8-1
video cameras 2-2

setting up 2-7
troubleshooting 13-3

video formats
specifying 4-12
specifying with device configuration

files 4-14
Video Input block 16-13
video input objects

defined 4-9
getting information about 4-16
running state 15-36
starting 4-24
state 4-24
stopping 4-24
viewing current state 4-11

Video Preview window
closing 2-13
opening 2-11
stopping the preview video stream 2-12
troubleshooting 13-44

video source objects
array of 15-40
currently selected source 15-37
displaying list of 4-15
names of 15-42
relation to video input objects 4-9
specifying selected object 4-15

VideoFormat property 15-61
videoinput function 14-71

using 4-9

Index-8

Index

VideoResolution property 15-63
VideoWriter file 3-17 3-38
VideoWriter object

logging images to disk 5-46
viewing images 6-23

W
wait function 14-74

using 5-37
waiting for an acquisition to complete 5-37
webcams

support for 2-5
winvideo adaptor

troubleshooting hardware 13-36

Index-9

	toc
	Getting Started
	Image Acquisition Toolbox Product Description
	Key Features

	Product Overview
	Introduction
	Installation and Configuration Notes
	The Image Processing Toolbox Software Required to Use the Image
	Related Products
	Supported Hardware

	Image Acquisition Tool (GUI)
	Getting Started Doing Image Acquisition Programmatically
	Overview
	Step 1: Install Your Image Acquisition Device
	Step 2: Retrieve Hardware Information
	Determining the Adaptor Name
	Determining the Device ID
	Determining the Supported Video Formats

	Step 3: Create a Video Input Object
	Viewing the Video Input Object Summary

	Step 4: Preview the Video Stream (Optional)
	Step 5: Configure Object Properties (Optional)
	Types of Image Acquisition Objects
	Viewing Object Properties
	Setting Object Properties

	Step 6: Acquire Image Data
	Running the Example
	Image Data in the MATLAB Workspace

	Step 7: Clean Up

	Introduction
	Toolbox Components Overview
	Introduction
	Toolbox Components
	The Image Processing Toolbox Software Required to Use the Image
	The Image Acquisition Tool (GUI)
	Supported Devices

	Setting Up Image Acquisition Hardware
	Introduction
	Setting Up Frame Grabbers
	Setting Up Generic Windows Video Acquisition Devices
	Setting Up DCAM Devices
	Resetting Your Image Acquisition Hardware
	A Note About Frame Rates and Processing Speed

	Previewing Data
	Introduction
	Opening a Video Preview Window
	Stopping the Preview Video Stream
	Closing a Video Preview Window
	Previewing Data in Custom GUIs
	Performing Custom Processing of Previewed Data
	Creating the Update Preview Window Function
	Specifying the Update Preview Function

	Using the Image Acquisition Tool GUI
	The Image Acquisition Tool Desktop
	Opening the Tool
	Parts of the Desktop

	Getting Started with the Image Acquisition Tool
	Selecting Your Device in Image Acquisition Tool
	Selecting a Device and Format
	Adding New Hardware
	Using a Camera File

	Setting Acquisition Parameters in Image Acquisition Tool
	Using the Acquisition Parameters Pane
	Setting Frames Per Trigger
	Setting the Color Space
	Setting Device-Specific Parameters
	Logging Your Data
	Memory Logging
	Disk Logging

	Setting Up Triggering
	Selecting the Number of Triggers
	Selecting the Trigger Type

	Setting a Region of Interest
	Setting Region of Interest Manually
	Setting Region of Interest Interactively

	Restoring Default Parameters

	Previewing and Acquiring Data in Image Acquisition Tool
	The Preview Window
	Previewing Data
	Acquiring Data
	If Images Are Blurry or Dark

	Exporting Data in the Image Acquisition Tool
	Saving Image Acquisition Tool Configurations
	Exporting Image Acquisition Tool Hardware Configurations to MATL
	Saving and Copying Image Acquisition Tool Session Log
	About the Session Log
	Saving the Session Log
	Copying the Session Log

	Registering a Third-Party Adaptor in the Image Acquisition Tool

	Connecting to Hardware
	Getting Hardware Information
	Getting Hardware Information
	Determining the Device Adaptor Name
	Determining the Device ID
	Getting More Information About a Particular Device

	Determining Supported Video Formats

	Creating Image Acquisition Objects
	Types of Objects
	Video Input Objects
	Video Source Objects
	Creating a Video Input Object
	Viewing a Summary of a Video Input Object

	Specifying the Video Format
	Using a Video Format String
	Using Device Configuration Files (Camera Files)

	Specifying the Selected Video Source Object
	Getting Information About a Video Input Object

	Configuring Image Acquisition Object Properties
	About Image Acquisition Object Properties
	Viewing the Values of Object Properties
	Viewing the Properties of a Video Source Object

	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property
	Viewing a List of All Settable Object Properties
	Setting Trigger Properties

	Starting and Stopping a Video Input Object
	Deleting Image Acquisition Objects
	Saving Image Acquisition Objects
	Using the save Command
	Using the obj2mfile Command

	Image Acquisition Toolbox Properties

	Acquiring Image Data
	Acquiring Image Data
	Data Logging
	Overview
	Trigger Properties

	Setting the Values of Trigger Properties
	About Trigger Properties
	Specifying Trigger Type, Source, and Condition
	Determining Valid Configurations
	Configuring Trigger Type, Source, and Condition Properties

	Specifying the Trigger Type
	Comparison of Trigger Types
	Using an Immediate Trigger
	Using a Manual Trigger
	Using a Hardware Trigger
	Setting DCAM-Specific Trigger Modes
	Trigger Mode 0
	Trigger Mode 1
	Trigger Mode 2
	Trigger Mode 3
	Trigger Mode 4
	Trigger Mode 5
	Trigger Mode 14
	Trigger Mode 15

	Controlling Logging Parameters
	Data Logging
	Specifying Logging Mode
	Specifying the Number of Frames to Log
	Specifying a Noncontiguous Acquisition

	Determining How Much Data Has Been Logged
	Acquiring 100 Frames

	Determining How Many Frames Are Available
	Delaying Data Logging After a Trigger
	Specifying Multiple Triggers

	Waiting for an Acquisition to Finish
	Using the wait Function
	Blocking the Command Line Until an Acquisition Completes

	Managing Memory Usage
	Memory Usage
	Monitoring Memory Usage
	Modifying the Frame Memory Limit
	Freeing Memory

	Logging Image Data to Disk
	Logging Data to Disk Using VideoWriter
	Logging Data to Disk Using VideoWriter
	Guidelines for Using a VideoWriter Object to Log Image Data

	Logging Data to Disk Using an AVI File
	Creating an AVI File Object for Logging
	Logging Grayscale Images Using an AVI File
	Guidelines for Using an AVI File Object to Log Image Data
	Closing the DiskLogger AVI file

	Logging Data to Disk Using an AVI File

	Working with Acquired Image Data
	Image Acquisition Overview
	Bringing Image Data into the MATLAB Workspace
	Overview
	Moving Multiple Frames into the Workspace
	Acquiring 10 Seconds of Image Data

	Viewing Frames in the Memory Buffer
	Bringing a Single Frame into the Workspace

	Working with Image Data in MATLAB Workspace
	Understanding Image Data
	Determining the Dimensions of Image Data
	ROIs and Image Dimensions
	Video Format and Image Dimensions

	Determining the Data Type of Image Frames
	Specifying the Color Space
	Converting Bayer Images

	Viewing Acquired Data

	Retrieving Timing Information
	Introduction
	Determining When a Trigger Executed
	Determining When a Frame Was Acquired
	Getting the Relative Acquisition Time
	Getting the Absolute Acquisition Time

	Determining the Frame Delay Duration

	Using Events and Callbacks
	Using Events and Callbacks
	Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Introduction
	Event Structures
	Data Fields for Start, Stop, Frames Acquired, and Trigger Events
	Data Fields for Error Events
	Data Fields for Timer Events

	Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Introduction
	Creating Callback Functions
	Writing a Callback Function

	Specifying Callback Functions
	Using a Text String to Specify Callback Functions
	Using a Cell Array to Specify Callback Functions
	Using Function Handles to Specify Callback Functions
	Specifying a Toolbox Function as a Callback
	Disabling Callbacks

	Viewing a Sample Frame
	Monitoring Memory Usage
	Creating the Memory Monitor Callback Function
	Running the Example

	Using the From Video Device Block in Simulink
	Simulink Image Acquisition Overview
	Opening the Image Acquisition Toolbox Block Library
	Using the imaqlib Command
	Using the Simulink Library Browser

	Using Code Generation
	Saving Video Data to a File
	Introduction
	Step 1: Open the Image Acquisition Toolbox Library
	Step 2: Open a Model or Create a New Model
	Step 3: Drag the From Video Device Block into the Model
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify From Video Device Block Parameter Values
	Step 7: Run the Simulation

	Configuring GigE Vision Devices
	Types of Setups
	Network Hardware Configuration Notes
	Network Adaptor Configuration Notes
	Windows Configuration
	Installation of GigE Vision Cameras and Drivers on Windows

	Linux Configuration
	Mac Configuration

	Software Configuration
	Setting Preferences
	Troubleshooting

	Using the Kinect for Windows Adaptor
	Important Information About the Kinect Adaptor
	Data Streams Returned by the Kinect
	Detecting the Kinect Devices
	Acquiring Image and Skeletal Data Using Kinect
	Acquiring from Color and Depth Devices Simultaneously
	Using Skeleton Viewer for Kinect Skeletal Data
	Installing the Kinect for Windows Runtime
	Support Packages and Support Package Installer
	What Is a Support Package?
	What Is Support Package Installer?

	Install This Support Package on Other Computers
	Open Examples for This Support Package
	Using the Help Browser
	Using the Block Library
	Using Support Package Installer

	Using the VideoDevice System Object
	VideoDevice System Object Overview
	Creating the VideoDevice System Object
	Using VideoDevice System Object to Acquire Frames
	Kinect for Windows Metadata

	Using Properties on a VideoDevice System Object
	Code Generation with VideoDevice System Object
	Using the codegen Function
	Shared Library Dependencies
	Usage Rules for System Objects in Generated MATLAB Code
	Limitations on Using System Objects in Generated MATLAB Code

	Adding Support for Additional Hardware
	Support for Additional Hardware

	Troubleshooting
	Troubleshooting Overview
	DALSA Coreco IFC Hardware
	Troubleshooting DALSA Coreco IFC Devices
	Determining the Driver Version for DALSA Coreco IFC Devices

	DALSA Coreco Sapera Hardware
	Troubleshooting DALSA Coreco Sapera Devices
	Determining the Driver Version for DALSA Coreco Sapera Devices

	Data Translation Hardware
	DCAM IEEE 1394 (FireWire) Hardware on Windows
	Troubleshooting DCAM IEEE 1394 Hardware on Windows
	Installing the CMU DCAM Driver on Windows
	Installing the Driver

	Running the CMU Camera Demo Application on Windows

	Hamamatsu Hardware
	Matrox Hardware
	Troubleshooting Matrox Devices
	Determining the Driver Version for Matrox Devices

	QImaging Hardware
	Troubleshooting QImaging Devices
	Determining the Driver Version for QImaging Devices

	National Instruments Hardware
	Troubleshooting National Instruments Devices
	Determining the Driver Version for National Instruments Devices

	Point Grey Hardware
	Troubleshooting Point Grey Devices
	Determining the Driver Version for Point Grey Devices

	GigE Vision Hardware
	Troubleshooting GigE Vision Devices on Windows
	Troubleshooting GigE Vision Devices on Linux
	Troubleshooting GigE Vision Devices on Mac

	GenICam GenTL Hardware
	Troubleshooting GenICam GenTL Hardware

	Windows Video Hardware
	Troubleshooting Windows Video Devices
	Determining the Microsoft DirectX Version

	Linux Video Hardware
	Troubleshooting Linux Video Devices

	Linux DCAM IEEE 1394 Hardware
	Troubleshooting Linux DCAM Devices

	Macintosh Video Hardware
	Troubleshooting Macintosh Video Devices

	Macintosh DCAM IEEE 1394 Hardware
	Troubleshooting Macintosh DCAM Devices

	Video Preview Window Troubleshooting
	Contacting MathWorks and Using the imaqsupport Function

	Functions — Alphabetical List
	Properties — Alphabetical List
	Block Reference
	Index

	tables
	Comparison of Trigger Types
	Frame Metadata
	Events and Callback Function Properties

